
II.   YIELD AND FAILURE CRITERIA FOR ISOTROPIC MATERIALS 
 

 

 

     The restriction to isotropic conditions has strong consequences, which in 

general are quite helpful.  For example, for isotropy the linear elastic range 

properties are completely specified by only two independent moduli or 

compliances.  It will be found that the failure criteria also are completely 

specified by two independent strength properties.  Anisotropic materials will 

turn out to require many more failure type properties than for isotropy. 

 

     The objective in this section is to obtain general failure criteria that apply to 

all homogeneous and isotropic materials, thus crossing over and including the 

different materials types.  This would not be possible if nano or micro scale 

mechanisms were brought in since these almost always require restriction to a 

particular materials type.  There is no inherent incompatibility in characterizing 

failure at the macroscopic scale (as done here) and in characterizing the 

initiation of local failure at the nano-scale or at any other sub-scale for a 

particular material.  Infact, such combined information is mutually reinforcing. 

 

     The relevant two strength properties will be specified by the failure values 

in uniaxial tension and uniaxial compression, designated by T and C 

respectively.  The T/C ratio scans across materials types.  The case of very 

ductile metals has T equal to or only slightly less than C.  Tough, ductile 

polymers have T/C ratios near values of 3/4 or 2/3 or thereabouts.  Brittle 

polymers have T/C of about 1/2 or less, as are brittle metals.  Ceramics have 

T/C of about 1/5 or slightly larger, or much less.  Glasses can have T/C of 1/10 

or less.  No single materials type has an exclusive range of T/C values.  It is 

interesting that the spectrum of T/C values tracks the trend from ductile to 

brittle materials.  The smaller the T/C value, the more likely the material is to 

be brittle, rather than ductile.  Much will be made of this physical                         

characteristic later. 

 

     The Mises and Tresca failure (yield) criteria with T = C apply to very 

ductile metals, but function poorly for all other materials types.  The Coulomb-

Mohr form is the only general failure criterion intended for all materials types 

that has survived historically, Coulomb [1], Mohr [2].  It has proven to be 

completely inadequate, but it still merits its place in the history of scientific 

efforts.  This criterion is given by 
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where 
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 is the largest principal stress and 
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3
 is the smallest.  In principal 

stress space the form (1) is a six sided pyramid enclosing the origin.  The 

extremely simple, linear form of (1) immediately reveals its inadequacy.  Even 

the Mises criterion involves a quadratic form, and quadratic forms are needed 

to provide  locally smooth, outwardly convex failure surfaces which are 

understood to be generally required for isotropic materials.  Mohr was well 

aware of this deficiency, but nobody subsequently was able to modify the 

Coulomb-Mohr form in a successful manner and retain a basic, two property 

format.  Surprisingly few other general, isotropic failure theories have been 

developed over the historical time span, and none with anything even 

approaching the recognition level of the Coulomb-Mohr theory. The website 

http://www.efunda.com gives a complete summary of the Coulomb-Mohr 

criterion, as well as the Mises, the Tresca (maximum shear stress), and the 

maximum normal stress criteria. 

 

     The recent failure program began development in 1997.  Over the next ten 

years seven papers were published on the methodology.  Each paper 

confronted the development of a different and important facet of the overall 

problem.  The final paper in 2007 integrated all the preceding developments to 

form a complete theory of yielding and failure.  This final paper also gave a 

general introduction to the topic and a list of historically relevant references.  

These seven papers are available from the journals shown below, and the most 

recent five can be downloaded in LLNL manuscript form from the 

FailureCriteria.com homepage. 
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     A brief outline of the method of development is as follows.  Take 

! 

I
1
 as the 

first invariant of the stress tensor, namely its trace.  Take 

! 

J
2
 as the second 

invariant of the deviatoric stress tensor.  Perform a polynomial expansion up to 

terms of second degree, and express that as the possible failure criterion.  The 

result is 
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where 

! 

",#, and $  are parameters.  All historical efforts to derive general 

failure criteria used the condition that the isotropic material would not fail 

under compressive hydrostatic stress.  That condition will be used here, and it 

requires that the 
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 term in (2) vanish, 
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" = 0, giving 
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This then leaves just two failure parameters, 

! 

" and # , to be determined.  This 

is done by calibrating (3) such that it specifies failure when the uniaxial stress 



reaches the values T and C, the failure properties in uniaxial tension and 

compression. 

 

     In compact, nondimensional, tensor form, the criterion (3) becomes 
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where nondimensional stress is 
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Symbol 
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s
ij
 is the deviatoric stress tensor.  The uniaxial strength values T and C 

are taken such that 
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     The failure criterion (4) is quite successful for materials considered to be 

normally or nominally ductile, but it is less satisfactory for brittle materials.  

This suggests that another mode of failure may be operative, perhaps a 



competing fracture mode of failure.  A different but related recognition of this 

problem may be seen conceptually as follows.  Yield functions are generally 

considered to have corners.  The form (4) has no such characteristic.  By far 

the most likely physical explanation for corners would be that they result from 

the intersection of two different modes of failure, say a ductile one and a brittle 

one.  In considering a second, brittle mode of failure, fracture is the obvious 

explanation.  However, this possibility inevitably leads to a paradox.  Fracture 

mechanics gives the response to the stress concentration at a crack or other 

physical disruption whereas for the homogeneous materials which are being 

considered here there are no such disruptions or discontinuities.  The resolution 

of this seeming paradox is that below the scale of the homogeneity, there 

certainly are flaws and defects which could initiate fracture, and which would 

ultimately manifest themselves as failure on the macroscopic scale. 

 

     Propagating cracks in homogeneous and isotropic materials tend to assume 

the direction consistent with a Mode I response to the maximum tensile stress 

component, even though they may have received forced initiation as something 

else, Broberg [3].  Therefore, a Mode I type fracture criterion will  be taken as 

the possible brittle range failure criterion.  This then gives 
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where 

! 

"
1
 is the largest principal stress.   The requirement 

! 

" #1 for this 

fracture criterion  to be operative can be deduced as follows.  The failure 

criterion (4) is geometrically a paraboloid in principal stress space.  The 

fracture criterion (7) is that of three planes normal to the three coordinate axes 

in principal stress space. It is at the value 

! 

" =1 that the three fracture 

controlled planes are just tangent to the yield/failure paraboloid.  For 

! 

" >1 the 

three planes cut sections out of the paraboloid.  For values of 

! 

"  very near to 

! 

" =1 these sections are very small, but they increase in size as 

! 

"  increases.  

The much more elaborate details of this construction are given in the above 

noted papers.  The meaning of the 

! 

(1+") term in (7) will be made apparent 

below where these relations are fully written out in dimensional form.



     Finally, the two governing failure criteria  (4) and (7) take the following 

forms when expressed in terms of components, 
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and 
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then also 
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where !1 is the largest principal stress. 

 

     When T = C the criterion (8) becomes the Mises criterion, and the fracture 

criterion (10) is inoperative because of (9).  The general failure criteria (4)-(7) 

or (8)-(10) are completely specified by the two failure properties, T and C. 

Awareness of the paraboloidal part, (8), of this failure criterion goes back at 

least as far as to Mises.  The fracture part, (10), also has historical antecedents 

as the maximum stress form.  The present general theory, which necessarily 

coordinates both of them through (9), is new.  The failure modes distinguish 

fracture type brittle failure from a yielding type of strength followed by plastic 

flow (idealized here as elastic-perfectly plastic behavior).  The failure criteria 

(8) – (10) are displayed in three dimensional form on the Failure Surface 

Graphics page. They are displayed in two dimensional form and compared 

with other criteria at http://www.efunda.com. 

 

http://www.failurecriteria.com/failuresurfacegr.html
http://www.failurecriteria.com/failuresurfacegr.html


     In the above 2004 paper (downloadable from the FailureCriteria.com 

homepage) an extensive comparison with experimental data is given, for brittle 

as well as ductile materials.  The data cases are for the following materials 

types :  metallic,  polymeric,  ceramic, and  geological.  The stress states of 

testing are of both two dimensional and three dimensional forms, with quite 

extensive data for all four materials cases.  The comparisons between the data 

and the theoretical predictions, based upon the T and C values for each 

material, are realistic and satisfactory.  There has always been and always will 

be a need for reliable failure data.  This is not only for the purpose of 

validating (or disproving) theoretical predictions, but also  as a permanent data 

base in its own right.  In general, the combination of a robust theory and an 

acute data base can provide the kind of leverage needed for advancement. 

 

      The yield/failure criterion (4) or (8) takes the form of a paraboloid in 

principal stress space,  Fig. 1. 

 

 
 

Fig. 1   Eq. (8), Failure Surface Paraboloid 

 

 

 



As mentioned earlier, the fracture criteria (7) or (10) intersect the paraboloid 

and produce three flattened surfaces on it.  This is most easily illustrated in two 

dimensional stress space 

! 

"
11

 and 
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22

 with the other stresses vanishing,  Fig. 2, 

which is for T/C = 1/3. 

 

 
 

Fig. 2   Eqs. (8)-(10), Biaxial Stress, T/C=1/3 

 

 

Referring to the biaxial stress state,the T/C = 1 case would be the usual Mises 

ellipse.  At T/C = 1/2 the fracture criterion (10) is just tangent to the shifted 

and slightly smaller ellipse (8) at the intercepts with the axes.  The T/C = 1/3 

case, Fig. 2, is typical of  cast iron and some ceramics, showing a very 

pronounced fracture cutoff effect.  The limiting case T/C!0 reveals that 

applied stress can be sustained only if the mean normal stress is negative and 

no component of normal stress is positive. 

 

     The  failure criteria  (8)-(10) have been examined in considerable detail and 

developed into a criterion for ductile versus brittle behavior.  Thus the 

modified paraboloid in stress space is subdivided into regions of brittle failure 

versus regions of ductile failure.  The brittle regions are not just the fracture 

planes produced by (10) but also include portions of the paraboloid (8).  For 



given values of T and C the specific stress state which is imposed determines 

whether the failure will be of ductile or of brittle nature.  The resulting stress 

state division into ductile and brittle regions would not actually be expected to 

have a sharp dividing line between them, but rather to be of a transition zone 

nature in reality. 

 

  The ductile-brittle criterion is discussed and illustrated at length in the above 

papers.  This ductile-brittle behavior can also be viewed for a particular stress 

state as showing the change as a function of the T/C variation.  For example, 

for uniaxial tension it is found that 
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While for simple shear the result is 
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All stress states have T/C designated regions of ductile or brittle behavior.  

Some particular stress states are entirely of the ductile type for all values of 

T/C while some are entirely brittle. 



    The limiting case of the yield/failure paraboloid at 

! 

" = 0 is given by (4) or 

(8) as the Mises cylinder,  Fig. 3. 

 

 

 

 

 
 

 

 

Fig. 3   Mises Cylinder, Principal Stress Space 

 

 

 

The ductile-brittle criterion given in the papers divides the Mises cylinder into 

ductile versus brittle failure regions as shown.  Most of the common stress 

states are on the ductile side of the division, but if the mean normal stress part 

of the stress state is sufficiently great, brittle failure will occur.  This might 

seem to be a surprising result, but on further consideration it is to be expected.  

Consider first the effect of temperature.  Temperature variation can determine 

whether a given material fails in a ductile or a brittle manner.  So too can 

pressure control the ductile versus brittle failure character.  Sufficient pressure 

can convert a nominally brittle material into a ductile material.  Conversely, 

negative pressure can convert a nominally ductile material into a brittle 

material as shown in Fig. 3. 

 



     The development and consequences of this comprehensive yield/failure 

theory for isotropic materials have been examined in many different ways in 

the above papers.  For applications where both yield strength and brittle failure 

are viewed together as generalized failure, the failure criteria (8)-(10) comprise 

the entire specification needed for analysis.  The insertion of failure criteria 

(8)-(10)  into finite element codes is especially easy to implement, use, and 

interpret. 

 

     Perhaps other new theories of yield and failure criteria for isotropic 

materials are yet to be developed. After they have received a reasonable level 

of recognition in the peer reviewed literature they will be surveyed here. 
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