
 XXVI.     THE PROOF OF THE SPLITTING MODE OF COMPRESSIVE 
BRITTLE FAILURE AND INTEGRATION WITH GENERAL 
FAILURE THEORY 

 
 
1. Introduction  
 
The subject here is that of materials failure, it has always been of utmost 
concern.  The popular failure theory of the early days was disproved and laid 
to rest.  All subsequent attempts have also proven to be not just inadequate 
but incorrect. Summaries of the many errant historical forays into failure 
theory have been given by Christensen [1].  
 
Since the early times the problem of materials failure as a general theory has 
remained unfulfilled.  Over the long term the situation has degenerated into a 
formidable obstacle to advancement.  Only very recently has a new and 
viable failure theory for isotropic materials been set forth.  It will provide the 
starting platform for the following work. 
 
The overall purpose of this work is to endeavor to solve one of the most 
difficult and most important failure specific problems of all time.  The 
problem concerns the uniaxial compressive failure for extremely brittle 
materials.  That along with uniaxial tensile failure comprise the two most 
fundamental states of materials failure.  Both are classical.  The tensile 
problem is thoroughly and completely understood.  The compressive 
problem, particularly in the brittle range of behavior, remains shrouded in 
mystery and uncertainty.  The compressive failure problem will be fully 
posed in the next section after first recording the new failure theory and 
formalizing the brittle limit definition. 
 
 
2. Problems of Materials Failure at the Brittle Limit 
 
The main focus and attention is given here to the failure behavior of 
materials at and near the brittle limit.  Failure problems are widely 
recognized to be among the most difficult problems in existence, and failure 
at the brittle limit must accordingly be regarded as exponentially difficult.  
But such problems are not impossibly difficult, as will be revealed here. 
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What is the meaning of the term “the brittle limit”?  To begin to answer this 
question we first must go back to the meaning of the ductility of failure.  
Brittleness is the complete absence of ductility.  Ductility is commonly taken 
to be expressed by the strain at failure for uniaxial tension.  But that says 
absolutely nothing about ductility and brittleness in other stress states, such 
as uniaxial compression.  This is not a productive line of investigation for 
the present purposes and some other direction must be found. 
 
It is best to approach the problem somewhat indirectly.  The approach 
followed by Christensen [1] was to search for an organizing principle that 
governs homogeneous, isotropic materials failure.  Ultimately it was found 
to be the spectrum for the materials property ratio T/C where T and C are the 
tensile and compressive uniaxial strengths.  The entire spectrum from the 
organizing principle is given by 
 

   (1) 

 
The ductile limit is obvious, it is specified by T/C=1. 
 
Behavior at and near the ductile limit is very well understood.  The T/C=1 
case is governed by both the Mises and Tresca criteria.  Originally the 
Tresca criterion was considered to be the fundamental form with the Mises 
case seen as an approximation to it.  Over a period of about a hundred years 
this presumed understanding shifted and inverted to the completely opposite 
circumstance.  Now days the Mises criterion is well understood to be the 
fundamental form at the ductile limit T/C=1.  The Tresca criterion is merely 
an approximation to it. 
 
With the ductile limit being very well understood, the organizing principle 
could only admit the diametrically opposite case as being the brittle limit, as 
specified by T/C=0.  That is the operating principle at work here.  Failure 
behavior near and at T/C=0 corresponds to failure approaching and at the 
brittle limit. 
 
What are the implications of the materials type having T/C=0?  This 
materials type or class must have T=0 and C≠0.  Thus the material must be 
so damaged or so incoherent that it cannot support any uniaxial tensile 
stress.  Does that mean that the material cannot support any stress state 
whatsoever?  The answer is negative.  Even though T=0 the fact that C≠0 

		
0≤ T

C
≤1



asserts that it can sustain a uniaxial compressive stress up to a point before 
failing.  Perceptive readers might see this as an inconsistency, a 
contradiction, but that perception would be incorrect. 
 
If the brittle limit requires T=0 how can one rationalize the condition C≠0, at 
a finite value for the uniaxial compressive strength?  The proposition goes 
like this:  decompose uniaxial compression into its dilatational and 
distortional components, as follows 
 

   (2) 

 
The last two groupings in (2) are two states of shear stresses.  It is the first 
grouping on the RHS of (2) that is a compressive hydrostatic stress.  It 
further is this compressive hydrostatic stress that imparts stability to the state 
of uniaxial compression even though the corresponding uniaxial tensile state 
and shear state cannot support any stress level. 
 
At this point the stability argument is only a plausible conjecture.  It must 
await the proof as being delivered by a full blown, verified field theory of 
failure. 
 
It is not possible to go any further based only upon reasoning explicitly and 
exclusively related to the values of T/C from the organizing principle.  The 
next step must be the assembly of a comprehensive and complete theory of 
isotropic materials failure.  Subsequent to that, the first test of the failure 
theory must be to verify that it captures and allows the brittle limit of 
materials failure with T=0 and C≠0.  Such a theory has been developed by 
Christensen [1].  It will be stated presently. 
 
The status and importance of the brittle limit should be placed in its proper 
perspective.  It is just as important as the ductile limit in terms of its 
significance for a general theory of failure.  If any proposed general theory 
cannot recover the proper behavior at the brittle limit as well as at the ductile 
limit, then it really isn’t a general theory.  It’s just another empirical exercise 
that possibly could be used for interpolation purposes with data but would be 
totally meaningless for projections beyond the range of the data. 
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The new theory of failure that will be employed here can now be briefly 
stated.  The main failure criterion is the polynomial invariants form, also 
called the failure potential, as 
 

   (3) 

 
where T and C are the uniaxial strengths and the stress is 
nondimensionalized by C as 
 

   (4) 

 
and where sij are the deviatoric stresses.  The failure criterion (3) applies 
over the full range of T and C given by (1). 
 
There also is an auxiliary (but important) fracture criterion that is 
competitive with (3).  It applies over the partial range shown below 
 

   (5) 

 
 
and where  are the three principal stresses. 
 
Amazing as it may seem, this comprehensive theory of isotropic materials 
failure is fully specified and made operational by only two independent 
failure properties, T and C.  The proof of validity has been established in 
many separate papers and in the book [1].  The guides to these proofs of 
validity are given in Ref. [2], Section 3 of that reference.  The derivation of 
failure theory (3)-(5) was quite involved and necessitated many different 
facets of technical considerations but the end result could not have turned 
out to be more simple.  The brittle limit of (3)-(5) will be explained here and 
now. 
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In principal stress form and using dimensional stress then (3) and (5) 
become 
 

   (6) 

 
and 
 

   (7) 

 
The first task is to see if a rational and physically reasonable brittle limit 
evolves and can be extracted from this failure theory.  From failure condition 
(6) at T/C=0 there remains 
 

   (8) 

 
Relation (8) is completely consistent at the brittle limit and the uniaxial 
compressive stress C remains to be determined independently from testing.  
At the brittle limit conditions (7) requires that all principal stress 
components must be negative, positive components cannot be supported.  At 
the brittle limit the Mohr-Coulomb failure criterion becomes irrational. 
 
The following section takes up the problem of interest here that can only be 
posed at the brittle limit.  It determines the explicit failure mode in uniaxial 
compression at the brittle limit and also in its neighborhood. 
 
Another classical problem also falls into the category of occurring solely at 
the brittle limit.  It is the problem of the angle of repose.  It will be taken up 
in future work. 
 
For a material at the brittle limit, it is first necessary to establish that it 
absolutely can support a uniaxial compressive stress up to the point of a 
finite value of the compressive stress and in so doing determine the nature of 
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the material failure process at the uniaxial stress equal to –C.  To put this 
another way, very brittle materials in uniaxial tension suffer failure due to 
standard fracture.  What exactly occurs with so called very brittle materials 
at their load limit in uniaxial compression? 
 
 
3. Mathematical Proof of the Splitting Mode and Mechanism of 
Compressive Brittle Failure 
 
The problem of prime importance and of direct interest is that of the elusive 
failure mode in uniaxial compression for materials at the brittle limit, T/C=0.  
Such materials are approached by typical geological materials having quite 
large values for C but very small values for T.  These materials types were 
used to prove the inadequacy and incorrectness of the Mohr-Coulomb theory 
of materials failure. 
 
Now we can approach the problem of determining the explicit mode of 
failure for the uniaxial compressive stress at the brittle limit.  The first 
introductory part of this development comes from the work of Christensen 
[3] where for uniaxial tension and compression the associated angles of 
failure were determined.  Write the form (6) in symbolic form as 
 
   (9) 
 
where f(  ) is the failure potential.  Take the strain increments of failure as 
given by 
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and where  is a dimensional property of the failure process in the material.  
Using (6) in (10) gives    
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Interest here is in the compressive case.  Then (11) and (12) are given by 
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Now take the failure angle with the axial direction to be  and take a rotated 
coordinate system as 1´ vs. 2´ with direction 1´ being in the plane of the 
failure and 2´ being normal to it as shown in Fig. 1. 

 

 
 

Fig. 1   The plane of failure in uniaxial stress 
 
 
The strain increments in the rotated coordinate system are 
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During a shear band forming failure process the “in plane” failure strain 
increments  are taken to vanish while the “out of plane” failure strain 
increments increase or decrease in an unlimited manner.  This gives the 
failure angle from (15), , as 
 

   (18) 

 
From Ref. [3] the angles of the failure plane are given as in Fig. 2. 
 

 
 

Fig. 2   Failure angles in uniaxial stress including only the shear band mode 
of compressive failure 
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The uniaxial tensile case is also shown in Fig. 2.  The ductile/brittle 
transitions are as shown in Fig. 2.  Please see Ref. [3] for a full and complete 
discussion on these matters. 
 
The specific result of interest here is the compressive failure angle form 
shown in Fig. 2.  Although it appears to be linear in form it is not, it is the 
form that results from (18).  This mode of compressive failure up to the 
ductile/brittle transition shown in Fig. 2 is completely that of the formation 
of a shear band.  Even at T/C=0 the angle of the shear band is at 35.3º from 
the axial direction and it involves , that is, there is no nonlinear normal 
strain increment in the plane of the shear band. 
 
By supposition the splitting mode of compressive brittle failure occurs at the 
brittle limit T/C=0 and it involves the failure angle aligned with the axial 
direction  accompanied by a lateral expansion in the failure process.  
The previous solution described above and involving the shear band 
mechanism of failure does not fit the prescription for a splitting mode of 
failure at the brittle limit.  How can these two very different types of 
compressive failure behavior be reconciled?  The answer and understanding 
to this fundamental question will now be developed. 
 
In arriving at the result of =35.3º for the shear band mechanism of failure 
from (15) there was the condition =0 followed by letting T/C 0.  There 
is an alternative way to proceed.  Before letting T/C 0 take the limit 
process as having 0 followed by T/C 0.  From (15)-(17) the result from 
setting =0 is  
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Note the similarity of these equations to (13) and (14).  In arriving at (19)-
(21) the condition =0 could not be used because that is only applicable to 
the shear band mode of failure. 
 
Re-write (19) and (20) as 
 

   (22) 
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Finally, go to the brittle limit with T/C 0.  This gives (22), (23), and (21) 
as 
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   (26) 
 
 
 
This grouping unequivocally is the splitting mode and mechanism of failure 
as occurring at T/C=0.  The material undergoes crushing in the axial 
direction and suffers large lateral expansion in the explicit splitting 
mechanism and mode of failure. 
 
This much takes care of what happens at T/C=0 but that still leaves open the 
question of what transpires over the entire range of T/C for the compressive 
mode and mechanism of failure as it relates to the splitting mechanism. 
 
In examining the shear band mode of compressive failure it is found that  
is of negative value over the range 1/2≤T/C≤1 but it goes to zero right at 
T/C=1/2.  The expectation is that must be positive over the range 
0≤T/C≤1/2 to be consistent with the splitting mechanism of failure.  We will 
operate with that presumption, subject to later verification.  With that 
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condition it follows that a splitting mode type of failure occurs from 
0≤T/C≤1/2.  In following this direction to proceed it also follows that for the 
splitting mode of failure over the range 0≤T/C≤1/2 the condition  
cannot be used. 
 
For the relationship of  to T/C over the splitting mode range of behavior, 
the controlling form will be taken to have the same general form as occurs 
for all the other modes of failure occurring in Fig. 2.  This form is that of 
 

   (27) 

 
where a, b, c, and d are to be determined, but only three of them are 
independent. 
 
The form in (27) becomes much simpler when the necessary condition (24)-
(26) that 
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is invoked. Using (28) in (27) then gives the required solution as having the 
form 
 

   (29) 

 
Determine c and d in (19) to give continuity of  from (18) and from 
(29) and also require continuity of the associated first derivatives.  The end 
result is the mode of compressive failure given by 
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It can be verified that  for the splitting/shearing mode of (30). 
 
The full form of the failure angles including the splitting/shearing mode (30) 
is shown in Fig. 3. 

 
 

 
Fig. 3    Failure angles in uniaxial stress including the splitting mode of 

compressive failure 
 
In Fig. 3 the shear band mode of compressive failure controls the range from 
1/2≤T/C≤1 whereas the combined splitting/shearing mode of compressive 
failure controls the range  0≤T/C≤1/2. 
 
Fig. 2 shows the shear band mode of compressive failure behavior whereas 
Fig. 3 shows the somewhat more involved form of compressive failure in 
which the combined shear band and splitting mode of failure participates.  
Both separate cases of Figs. 2 and 3 are legitimate representations of 
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possible failure types.   However, the form in Fig. 2 is superseded by that in 
Fig. 3 as the more common form since it fully admits the splitting mode of 
failure.  Fig. 2 is more restrictive. 
 
 
4. Consequences for General Conditions of Failure 
 
Fig. 3 encapsulates and conveys the full and complete range of failure angle 
behaviors for isotropic materials in the most basic of all stress states, 
uniaxial tension and compression.  It is the purest of all extracts from the 
failure theory.  It is unique in such matters.  No other theory comes even 
close to such specificity, completeness, and rigor for a general treatment of 
materials failure.   
 
At the limit T/C=1 the tensile and compressive failure angles are identical at 
the octahedral angle in Fig. 3.  At the other limit, T/C=0, the two failure 
angle types have diverged to the maximum possible separation, one at 90º 
and the other at 0º.  Most importantly, the location and significance of the 
two ductile/brittle transitions (or brittle/ductile transitions) have been 
brought to full and consistent account in Fig. 3. 
 
Even though the failure mode in Fig. 3 from T/C=0 to T/C=1/2 is termed as 
the splitting/shearing mode, it is still considered to be ductile and only 
changes to the brittle behavior at the brittle limit T/C=0 where the 
ductile/brittle transition exists, see Ref. [3].  This mode of failure is a 
combination of the shear band behavior and the splitting behavior.  The pure 
splitting mode of failure only occurs at the limit of =0   and T/C=0 for the 
compressive failure. 
 
Specific examples from the theoretical splitting angle result (30) are as 
follows 
 

   (31) 

 

φ

		 

At T
C
= 1
75 =0.0133 φ =11.2!

At T
C
= 1
50 =0.02 φ =13.6!

At T
C
= 1
25 =0.04 φ =18.8!



These are within the usual range for geologcal materials and indicate that the 
associated splitting angles are from about 10-20 degrees for such materials. 
 
The splitting mode of compressive failure has always been much in 
evidence, especially with geological materials, Fairhurst and Cook [4].  A 
great many papers have been written on the splitting mode of failure.  None 
have proceeded along the lines developed here.  More on this will be said 
shortly.   General aspects of rock type mineral materials are given by Jaeger, 
Cook, and Zimmerman [5].   
 
The definitive experimental work on the splitting mode of failure was given 
by Chen and Ravichandran [6].  With a brittle glass ceramic material, they 
performed a series of elegantly designed experiments, some involving lateral 
confinement and some only involving free uniaxial compression.  The 
splitting mechanism clearly emerged for the latter cases but not for the 
former ones.  The material, of the trade name Macor, has a T/C value of 
about 1/10 placing it in the very brittle category.  Most geological materials 
are even much more extreme. 
 
Much of what was done here on the splitting problem has been related to the 
ductile/brittle transition.  It was not directly involved in what was done but it 
was always of presence and influence.  The two ductile/brittle transitions are 
highlighted in Fig. 3.  It would be expected that the forms of these two 
transitions in Fig. 3 would exhibit a considerable degree of smoothing in the 
reality of testing evidence, nevertheless they are of first importance. 
 
Anyone who has some familiarity with strength testing data would easily 
find agreement with the tensile ductile/brittle transition shown in Fig. 3 as 
occurring at T/C=1/2.  It is the compressive ductile/brittle transition at 
T/C=0 in Fig. 3 that is especially fascinating and significant in the present 
context.  There is a state of very low ductility in the near region of the 
ductile/brittle transition at T/C=0, Ref. [2].  This region of low ductility is 
exactly where the splitting mode of failure is the most active and prevalent.  
Away from this region, the state of uniaxial compressive failure is in the 
ductile to very ductile range, again please see Ref. [2]. 
 
Much or most of the past work on the splitting mode of brittle failure seeks 
to relate that effect to a fracture mechanics mechanism, even though the 
stress state is that of uniaxial compression.  In sharp contrast, the present 
work characterizes the splitting mode of failure as the sudden and brittle (or 



very nearly brittle) collapse of the material with crushing in the axial 
direction and expansion in the lateral direction.  It is the ductile/brittle 
transition at T/C=0 that ties it all together.  The pure splitting mode of 
failure at T/C=0 is transformed or transitioned to exactly the brittle form of 
activation and near to T/C=0 it is almost brittle with very little ductility. 
 
As mentioned, the failure behavior for brittle materials in uniaxial 
compression is sometimes loosely described as being that of fracture.  In 
view of the present work that actually is a misleading view of the complex 
failure processes that actually occur and result in the splitting manifestation. 
 
An intensive evaluation of the ductile/brittle transition has been conducted 
by Christensen, Li, and Gao [7].  That work successfully predicted the full 
implications of the overall behavior of ductile/brittle transitions in isotropic 
materials failure.  Closely related to that work, an in-depth examination of 
the shear bands and the voids nucleation modes of initiating failure has also 
very recently been given by Christensen, Li, and Gao [8].  No doubt it is the 
local voids nucleation mechanism that leads to the splitting failure 
mechanism at a larger scale. All these matters show the important and even 
crucial role played by the ductile/brittle transitions in materials science and 
in materials failure in particular. 
 
We close this paper with some perspective on this problem and its solution, 
especially as it relates to the times of antiquity.  For the colossal temples of 
ancient Greece (and before) the massive supporting marble columns could 
possibly have failed by the compressive splitting mechanism analyzed here 
or by Euler buckling.  Those two failure mechanisms, even if only 
understood heuristically at the time, were sufficient to allow the gifted 
designers and constructors to proceed.  After all these centuries it is 
satisfying and helpful to better understand the explicit and complete failure 
mechanisms.  There no longer is any reason or excuse for a heuristic, non-
scientific approach to treating materials failure.   
 
 
References 
 

1. Christensen, R. M. (2013), The Theory of Materials Failure, Oxford 
University Press, Oxford, U. K. 
 

2. Christensen, R. M. (2019), “The Ductility Number Nd Provides a 



Rigorous Measure for the Ductility of Material Failure,” J. Appl. 
Mech., 86, 041001. 
 

3. Christensen, R. M., 2018, “The Ductile/Brittle Transition Provides the 
Critical Test for Materials Failure Theory,” Pro. Roy. Soc., A, 474, 
20170817.  
 

4. Fairhurst, C., Cook, N. G. W. (1966), “The Phenomenon of Rock 
Splitting Parallel to the Direction of Maximum Compression in the 
Neighborhood of a Surface,” In Proc. 1st Cong. Int. Soc. Rock Mech., 
Lisbon, 25 September – 1 October,  687–692. Lisbon, Portugal: 
Laboratory Nacional de Engenharia Civil.  
 

5. Jaeger, J., Cook, N. G., and Zimmerman, R. (2007), Fundamentals of 
Rock Mechanics, 4th ed., Wiley, New York. 
 

6. Chen, W., and Ravichandran, G. (1997), “Dynamic Compressive 
Failure of a Glass Ceramic Under Lateral Constraint,” J. Mech. Phys. 
Solids, 45, 1303-1328. 
 

7. Christensen, R. M., Li, Z., and Gao, H., (2018), “An Evaluation of the 
Failure Modes Transition and the Christensen Ductile/Brittle Failure 
Theory Using Molecular Dynamics,” Proc. R. Soc. A, 474,  20180361.  
 

8. Christensen, R. M., Li, Z., and Gao, H. (2019), “An Independent 
Derivation and Verification of the Voids Nucleation Failure 
Mechanism: Significance for Materials Failure,” Pro. Roy. Soc. A, 
475, 20180755. 
 
 
 
 
 
 
 

Richard M. Christensen 

June 13th, 2019 

Copyright © 2019 Richard M. Christensen 


