
 
 

XI.   NANOMECHANICS OF GRAPHENE 
 
 

Carbon is an element of extraordinary properties.  The 
carbon-carbon bond possesses large magnitude cohesive 
strength through its covalent bonds.  Elemental carbon 
appears in a variety of forms from common graphite to high 
technology carbon fibers and on to high purity diamond 
and finally to the modern, ideal nanoscale forms of 
Fullerenes, nanotubes, and graphene.  When Fullerenes 
(Bucky-Balls) first came into initial exposure and testing, 
the form was termed by some as “The Molecule of the 
Year”.  Later of course it lead to multiple Nobel Prizes.  
Graphene is the perfect planar form of a sheet of carbon 
atoms at only one atom of thickness.  Fullerenes and single 
walled nanotubes provide the spherical and cylindrical 
forms that graphene can take.  The planar form, graphene, 
will be examined here, but it also represents the inherent 
properties available and exploitable in Fullerenes and 
nanotubes. 
 
Graphene Nanostructure 
 

Carbon has the atomic number of 6.  It has two 
electrons in an inner shell and four electrons in the outer 
shell of orbitals.  In graphene the four bonding electrons 
actually form three bonds with nearest neighbor atoms, 
with one of these being a double bond.  The two 
dimensional nature of graphene then has the atoms 
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arranged in a hexagonal pattern, as show below in Fig. 1, 
each with three nearest neighbors.  The atomic centers are 
at the nodes of the pattern and the outer shells of electrons 
meet midway between nodes. 
 
 

 
 

Fig. 1  Hexagonal pattern of graphene atoms 
 
 
 The hexagonal arrangement of the atoms has a six-fold 
symmetry that assures isotropy of the in-plane, large scale 
stiffness and compliance properties.  In order to model the 
average stiffness properties of graphene, the hexagonal 
pattern of atoms is idealized as a hexagonal pattern of 
connected elastic members that possess axial and bending 
stiffness characteristics that will be adjusted to represent 
the bond stretching (and contraction) and the bond bending 
(distortion) effects.  Each individual elastic member 
between atomic centers is taken with the axial and bending 
properties specified by the stiffness coefficients 
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where “l” is the distance between atomic centers and the 
other properties have the usual mechanics designations.  
Stiffness coefficient kB is that for the relative displacements 
of the beam member ends with no end rotations.  This 
overall treatment of the mechanical properties for graphene 
is motivated by the original conception of Bohr that for 
some purposes individual atoms could be taken as being 
effectively elastic bodies. 
 
 The hexagonal pattern of elastic members is analyzed 
to obtain the effective elastic properties of the sheet of 
carbon atoms.  The bending behaviors of the connecting 
elastic members are represented by Bernoulli-Euler beam 
theory.  At the atomic centers (nodes) the displacements 
and their first derivatives (slopes) of the members must be 
compatible and continuous and equilibrium of the forces 
and moments are required at the nodes (atomic centers).  
The analysis to ensure the equilibrium conditions is 
algebraically fairly long, but with no complications or 
approximations.  Thereafter, a homogenization process is 
applied to average over the complete assemblage of elastic 
members. 
 



 The end results of the analysis are the in-plane elastic 
properties given by the two dimensional Poisson’s ratio, 
Young’s modulus, shear modulus and bulk modulus.  These 
are respectively found to be given by the Poisson’s ratio 
form 
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and the three moduli 
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where 
  

 κ = kB
kA

0 ≤κ ≤ ∞( ) (4) 



These properties are the controlling, in-plane mechanical 
properties for the graphene type arrangement of carbon 
atoms.  Since the graphene sheet is only one atom thick 
there is no characteristic thickness dimension and the three 
moduli in (3) have units of force per unit length, not per 
unit area.  The limits on Poisson’s ratio in (2) are found by 
letting kA and kB in (4) assume all non-negative values. 
 
 The single elastic member between two neighboring 
atoms is taken as shown in Fig. 2 below 
 
 

 
 

Fig. 2  Idealized elastic member between two 
neighboring carbon atoms 

 
 



Appropriate to the two-dimensional nature of the problem 
for graphene, the elastic members connecting atomic 
centers are taken as planar forms of length “l” and width 
“d”.  The thickness of the elastic members are left as 
indeterminate and need not be specified here to obtain the 
variable κ .  In this planar case the κ  from (1) and (4) 
becomes simply 
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In obtaining (5) the factor of 12 in (1) is cancelled by a 
factor of 12 for the moment of inertia, I, for the connecting 
members.   
 

Physically, it is obvious that the elastic member width 
“d” could not possibly extend beyond the outer shell of the 
electrons, thus 
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l
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With (5), (6) now becomes 
 
 
 0 ≤κ ≤1 (7) 



Furthermore, with the physical restrictions (6) and (7) the 
Poissons’s ratio (2) now has the limits 
 
 
 0 ≤ν2D ≤1 (8) 
 
 
The case of ν2D= 0 is particularly interesting.  This occurs 
at κ  = 1 which means that the bond stretching resistance is 
perfectly balanced with the bond bending resistance. 
Insofar as Poisson's ratio is concerned and in the hexagonal  
nanostructure, when the  two effects are equally sized they 
counteract each other to produce the value of exactly  zero. 
 
 It is clear why there cannot be negative values for 
Poisson’s ratios in this case of graphene with its covalent 
bonding.  To allow negative Poisson’s ratios would require 
violation of the physical restriction (6) which would be 
fundamentally unrealistic and unacceptable.  With this new 
understanding, it is entirely appropriate to say that the 
positive Poisson’s ratios are physically realizable but 
negative values are not. 
 
 The use of Bernoulli-Euler theory for the bending 
behavior extends up to an aspect ratio of d/l that would not 
be used with ordinary structural members.  But the use here 
is totally different, with it providing the complete bond 
bending complement to the bond stretching effect without 
introducing any additional properties that must be specified 
independently. 



 
 By far the most interesting and most informative 
property in the group of four properties in (2) and (3) is the 
Poisson’s ratio.  Inverting the form (2) to obtain κ  in terms 
of ν2D  gives 
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Comparing (2) and (9) it is seen that the relation between 
ν2D  and κ  is form invariant.  From (2) or (9) and (7) the 
Poisson’s ratio ν2D  and the nondimensional bond 
bending/bond stretching variable κ  ranges over the values 
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 The graph of ν2D  versus κ , (2), is given by 
 

 

 
 

Fig. 3 ν2D  versus κ  for graphene 
 
 
 It is seen from (2) and (9) that the ν2D  versus κ  is 
symmetric about a 45˚ axis that goes through the origin and 
the central point of 
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This value for ν2D  and κ  has a very special significance.  It 
is at this point that the behaviors of ν2D  and κ  interchange 
roles with each other.  This is a special turning point or 
transition point. 
 
 There very likely is a change of physical behavior 
signified by ν2D  = 1/3.  The terms ductile and brittle cannot 
be used to describe the change because these terms do not 
apply here to the perfect arrangements of atoms.  Ductile 
and brittle behaviors usually apply only to macroscopic 
material behavior controlled by flaws and defects.  With 
this “perfect” material, graphene, perhaps the applicable 
descriptions would refer to extensibility up to failure such 
that 
 
 

 

For ν2D < 1
3

Less extensibility

For ν2D > 1
3

More extensibility

 

 
 



This is consistent with the limits at κ  = 0, ν2D= 1 and at     
κ  = 1, ν2D= 0,  The latter case has already been discussed.  
The former case at ν2D=1 has no resistance to bond 
bending deformation (bond distortion) and represents 
behavior reminiscent of elastomers in their 3-D formalism, 
which allow very large deformations through flexibility of 
the high molecular weight polymer chains. 
 
 Now the question arises as to where does graphene 
explicitly fit in with this range of conceivable behaviors 
that follow from this nanomechanics model.  Poisson’s 
ratio is difficult to measure directly, but there are clear 
indications of its likely value or narrow range of likely 
values for graphene.  First of all, diamond is generally 
considered to have a Poisson’s ratio of about ν  = 0.20.  
From Lee et al [1] and Al-Jishi and Dresselhaus [2] there is 
reasonable evidence that for graphene the Poisson’s ratio is 
somewhere in the range between 0.16 and 0.20.  This then 
places graphene in the range having less extensibility than 
it would possess if it had a higher value of ν2D , meaning 
lower value of κ  and d/l.  For the lower values of ν2D , 
meaning higher values of κ , the bond bending mechanism 
in this idealized elastic model suffers non-uniform stress 
conditions in the idealized beam type members and would 
be expected to fail at lower extensibilities. 
 
 Further application of the moduli in (3) could involve 
evaluating the coefficient kA directly from data or atomic 
scale considerations and then using that along with the 
other derived properties to examine the other mechanical 



properties.  It should also be noted that the results in (2) 
and (3) are the initial, linear range properties, whereas 
graphene is capable of extending into a considerable 
nonlinear range of behavior, Lee et al [1]. 
 
 
Comparison with a Hypothetical Nanostructure 
 
 The model just derived and discussed for graphene 
suggests another closely related model for a different ideal, 
two dimensional arrangement of atoms.  Suppose each 
atom has six nearest neighbors as in the arrangement below 
in Fig. 4. 
 
 

 
 

Fig. 4  Triangular pattern of atoms 
 
 
The basic repeating cell is triangular rather than hexagonal, 
but the hexagonal symmetry still applies at a larger scale.  



There is no known atomic arrangement of elemental atoms 
that gives this form, but it is an interesting, purely 
hypothetical nanoscale case to examine here.  Each atom 
would require six bonding electrons (at least) in the outer 
shell of electrons. 
 
 Conducting exactly the same type of equilibrium 
analysis as that given above for graphene, then gives the 
governing Poisson’s ratio for this new arrangement of 
atoms as 
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where again the limits on Poisson’s ratio are found by 
allowing all possible non-negative values on kA and kB in 
(4). 
 
 Between the two nanostructures considered here, then 
the complete range of Poisson’s ratios from (2) and (10) is 
the usual and accepted range of 
 
 
 −1≤ν2D ≤1 
 
 
 Now using the physical restriction (6) in (5) then (10) 
has the limits 
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for this new nanostructure. 
 
 The two nanostructures have the properties shown 
below with the appropriate physical limits on κ  given by 
(7). 
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The first nanostructure is that of graphene.  The second is 
the purely hypothetical triangular nanostructure with no 
presently known atomic configuration. 
 
 From the above table it is seen that the bulk modulus 
K2D is three times larger for the triangular nanostructure 
than it is for the hexagonal nanostructure at the same values 
of the bond stretching stiffness coefficients.  This is 
because of the greater number of atomic bonds in the 
former case.  Now express the K2D’s as functions of the ν2D
’s for the two nanostructures.  Then express E2D and µ2D in 
terms of the ν2D ’s for each nanostructure.  These results for 
the like properties of the two nanostructures at the same 
Poisson’s ratios are also found to differ by the same factor 
of three as do the K2D’s.  Using Poisson’s ratio in this 
manner provides a unification of the results.  Poisson’s 
ratio permits and provides a special scaling type of 
understanding of the behaviors and capabilities of these 
nanostructures. 
 
Discussion 



 
 So far, only the elastic moduli for these nanostructures 
have been examined.  It is not at all clear how the explicit 
conditions of failure should be approached.  Perhaps it is 
best for these cases of “perfect” materials with no defects 
or flaws to approach the failure question through atomic 
scale approaches such as through density functional theory.  
To the extent that a macroscopic scale form for a failure 
criterion could be conceived, perhaps the best form for that 
of two dimensional isotropic behavior would be the 
polynomial invariants formulation for quasi-isotropic 
laminates.  From Section V, Eq.  (5) this failure criterion is  
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where T, C, and S are the failure stresses in uniaxial tension 
and compression, and in shear.  As before, the stresses must 
have units for force per unit length.  Failure matters such as 
this are completely unexplored.  It is generally understood 
that strength at the nanoscale is not the same critical issue 
that it usually is at the macroscale. 
 
 It is an intriguing question to ask what “clues”, if any, 
these two dimensional ideal materials results may give for 
the three dimensional engineering materials of common 



use.  To take a small step in that direction, examine the 
Poisson’s ratios for those elements in the Periodic Table 
that take the form of solids.  The maximums and minimums 
are given by 
 
 
 
 

Maximum ν  
Gold 
Thallium 
Lead 

0.44 

Minimum ν  Beryllium 0.03 

 
 
In these limit cases, the maximum ν  certainly conforms to 
extreme ductile behavior while the minimum ν  material is 
very brittle.  This is consistent with the extensibility results 
found from graphene and its companion hypothetical 
nanostructure. 
 
 The case of beryllium provides a fascinating example.  
Brittle though it is, it has spectacular other properties at a 
very low density.  If this material were not so virulently 
toxic and if it were in reasonable supply, it could well be 
the material choice for an extremely broad range of 
applications.  Were that to be, it would probably be a very 
different world in which we live.  The present 2-D results 
show that the exceptionally low value of Poisson’s ratio for 
beryllium likely involves much more of its resistance to 



deformation as resulting from bond  bending (distortion) 
than do other materials.   
 

At the other end of the scale, of course dislocations are 
responsible for ductile behavior, but only correlations with 
Poisson’s ratio are being considered in the present limited 
context.  Thus at one extreme, gold has a very large 
Poisson’s ratio ν  = 0.44, implying minimal resistive force 
due to bond distortion while the other extreme, beryllium at    
ν  = 0.03, has the bond distortion resistance about as great 
as the bond stretching resistance.  In the latter case there 
results a very high level of stiffness, but at the expense of a 
very brittle failure behavior.  Midway between these two 
extremes is carbon.  For diamond with ν  = 0.20 and 
graphene with ν2D= 0.20 approximately, then from the 
stiffness coefficients (1) and with the corresponding          
κ  = 1/2, the bond distortion resistance is half that of the 
bond stretching resistance.  The strength of the bond 
distortion resistance relative to the bond stretching 
resistance is one of the fundamental controlling factors that 
profoundly influences materials behavior.  Perhaps it is the 
single most important effect of all. 
 
 With regard to the 3-D Poisson’s ratios for the 
elements, it appears that a gradual transition between 
ductile and brittle behaviors occurs somewhere in the 
region surrounding ν  = 1/5 (or a little larger).  This could 
be similar to the possible transition in the graphene type 
hexagonal arrangement of atoms that occurs at ν2D= 1/3.  It 
must be cautioned that these considerations and 
speculations could only possibly apply to materials forms 



for the elements that involve covalent bonding.  There are 
no implications for or extensions to the much more 
complicated world of materials as alloys, aggregates, 
compounds etc. 
 
 This probe into nanoscale properties provides an 
important example of the many opportunities that exist at 
that scale.  Although nanoscale failure has little relationship 
to the usual mechanisms of macroscale failure, the 
nanoscale is still the logical place to start to understand all 
of the basic effects.  None of the results found here could 
have been rationalized at the macroscale.  In particular, the 
explicit relationship of the graphene physical properties and 
the bond bending/bond stretching effects only come into 
meaningful focus at the nanoscale.  The results presented 
here are new and revealing of fundamental physical 
behavior for perfect materials formed from carbon atoms. 
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