
XXIV.  MATERIALS FAILURE THEORY,  STRAIN ENERGY, PRINCIPAL 
STRESSES EIGENVALUE PROBLEM; HOW THESE THREE 
HISTORICAL AREAS ARE INTERRELATED AND MUTUALLY 
REINFORCING THUS ENABLING NEW RESULTS FOR MATERIALS 
FAILURE 
 
 
1.   Introduction 
 
Consider the three disciplines or sub-disciplines of strain energy, the 
eigenvalue problem of principal stresses, and materials failure theory.  What 
could these three seemingly individually self-contained areas have to do 
with each other?  That is the subject of this entire paper. 
 
First of all, all three topics were of classical origin yet all three are still of 
everyday, immediate relevance.  Two of the three are complete, codified, 
absolutely beyond dispute or uncertainty, and universally employed.  The 
third area is in a dreadful state of disrepair.  Materials failure is 
unrecognizable as an organized discipline.  A very brief historical summary 
of the three areas will set the stage for why the three of them are crucially 
inter-related and how this relationship can enable a considerable step toward 
rescuing the beleaguered third area. 
 
Right from the beginning the great mathematician Cauchy [1] saw it all with 
incredible, almost unimaginable clarity.  He immediately conceived the 
tensor valued character for stress and formulated the equilibrium equations 
with these.  Navier was previously involved also.  Because stress is tensor 
valued, with remarkable insight he, Cauchy, understood the role of 
coordinate transformations and recognized the existence of principal stresses 
and their special character.  Cauchy viewed this through his stress quadric.  
The eigenvalue problem of the principal stresses arises directly from this.   
 
Cauchy also recognized the geometric role of strains and the relationship 
between stresses and strains.  The only thing he didn’t quite get right was the 
exact form for the stress-strain relations.  He and many others considered the 
relationship to be that of the attraction or repulsion between neighboring 
materials points, thus resulting in a one constant theory of elasticity.  It was 
an eminently logical assumption at the time, but it was incorrect. 
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The one constant theory of elasticity didn’t fit all the available testing data of 
the times and uncertainty and controversy over it ruled.  A little later 
someone stepped forward with a further remarkable, almost earth shaking 
new insight.  In one word it was energy.  In two words, strain energy.  
George Green [2] was the man and the general concept of strain energy 
brought with it two materials constants.  The disagreeable state of 
uncertainty and competition persisted and resisted resolution.  Much later 
Love [3] gave a masterful and complete account of the one constant versus 
two constants controversy, and Timoshenko [4] gave a concise summary of 
these historical developments. 
 
The time gap between Cauchy’s foundational form for the theory (followed 
fairly shortly by Green’s contribution) and the final agreement on the two 
constant form was an extremely lengthy 30 or more years.  So two of the 
three areas of interest here have existed and been in practice for over 150 
years.  The theory of elasticity superficially seemed to be complete.  On a 
deeper level though it couldn’t possibly be considered to be complete.  
Fluids don’t fail in any conventional sense of the term, but solids do fail, 
usually catastrophically.  Solids cannot bear and support unlimited loads.  
There never will be completion of elasticity theory until the associated 
theory of elastic materials failure itself is synthesized, completed, and in 
practice. 
 
It is a tremendous tribute to Coulomb [5] that right from the beginning of the 
new enlightenment he recognized the need for understanding and 
formalizing the treatment of materials failure.  Each of the early technical 
pioneers had their own distinctive ideas on how to characterize failure, each 
hoping theirs to be the universal, general form.  More than a hundred years 
later Mohr [6] picked up on Coulomb’s valiant efforts and formulated the 
Coulomb-Mohr theory of materials failure, presented and presumed as a 
general failure criterion. 
 
None of these efforts were successful.  It was von Karman [7] who proved 
the incorrectness of the Coulomb-Mohr form.  Another unsuccessful 
example was the much later Drucker-Prager form [8].  The history of 
materials failure investigation has been totally inconclusive and totally 
frustrating. 
 
The only success was the remarkable development of fracture mechanics.  
But even that did not and does not supplant the need for a three dimensional 



theory of materials failure, one that would be the natural complement to the 
theory of elasticity. The widely used Mises [9] and also the Tresca criteria 
are completely incapable of treating general materials failure.  Unfortunately 
that doesn’t stop people from indiscriminatingly using them on everything.  
All of these matters were laid out and fully discussed by Christensen [10]. 
 
The work to be given here is directly responsive to the glaring inadequacy or 
absence of a scientific mathematical basis for treating materials failure.  In 
particular, the classical eigenvalue problem for principal stresses and the 
classical formulation for strain energy will be used to develop the 
complementary and comprehensive theory of isotropic materials failure.  
The failure theory will be shown to be directly obtained from the other two 
disciplines, and to be of surprisingly simple form and of physical validity 
and realism. 
 
 
2.   The Eigenvalue Problem for the Principal Stresses 
 
As one of the founding and sustaining pillars of the mechanics of materials, 
for the principal stresses and the principal directions to exist, the determinate 
of the stresses must vanish as in 
 

 

	

σ 11 −λ σ 12 σ 13

σ 21 σ 22 −λ σ 23

σ 31 σ 32 σ 33 −λ

=0   (1) 

 
leading to the characteristic equation for λ  as       
 
 		λ

3 − I1λ
2 + I2λ − I3 =0   (2) 

 
The coefficients in (2) are the stress invariants 
 
 		I1 =σ 11 +σ 22 +σ 33   (3) 
 
 		I2 =σ 11σ 22 +σ 22σ 33 +σ 33σ 11 −σ 12

2 −σ 23
2 −σ 31

2   (4) 
 
 		I3 = σ ij   (5) 



 
and where the three roots of (2) are the three principal stresses 
 
 	λ =σ 1 , σ 2 , σ 3   (6) 
 
The invariants (3)-(5) are invariant with respect to the orientation of the 
coordinate system used to describe the stress state.  The first invariant I1, Eq. 
(3), has a simple physical interpretation.  Dividing Eq. (3) by 3 gives the 
mean normal stress.  Mean normal stress causes a volume change.  For this 
reason I1 is sometimes termed as the dilatational invariant.  This is in 
contrast to distortional behavior associated with shear stresses. 
 
All stress states can be decomposed into combinations of dilatational and 
distortional stress states.  The second invariant I2 is neither a dilatational nor 
distortional stress state but it would be helpful to have I2 expressed in terms 
that involve distortional stress states.  To this end, the deviatoric stress 
tensor is introduced as   
 

 
		
sij =σ ij −

δ ij
3 σ kk   (7) 

 
The first invariant of this deviatoric stress state vanishes thus it is 
independent of the dilatational stresses.  The second invariant of (7) is given 
by   
 
 	

sijsij   
 
and it is inherently distortional. 
 
Any coefficient can be appended to this invariant form so long as it is 
consistently carried forward.  Often the coefficient of 1/2 is used with 
yielding by the Mises criterion and the closely related concept of effective 
stress.  But that is of no relevance or use here for general materials failure.  
For this latter general purpose, a coefficient of 3/2 is preferable and it will be 
used here.  Define the second invariant of the deviatoric stresses as 
 

 
		
J2 =

3
2 sijsij   (8) 

 



Writing this out in terms of components gives the very simple and direct 
form of 
 

 
		
J2 =

1
2 σ 11 −σ 22( )2 + σ 22 −σ 33( )2 + σ 33 −σ 11( )2 +6 σ 12

2 +σ 23
2 +σ 31

2( )⎡
⎣⎢

⎤
⎦⎥
  (9) 

 
Invariant J2 is always positive (as required for distortional states), I2 is not.  
This will be of importance for the later strain energy considerations.  Note 
that for uniaxial stress J2 = 	σ 11

2  which will provide helpful calibration later. 
 
Next find the relationship between the invariants J2 and I2, if such a 
relationship exists.  It can be shown that 
 
 		J2 = I1

2 −3I2   (10) 
 
With the use of (10) the eigenvalue problem characteristic equation (2) can 
be written in the alternate and apparently new mathematical form as 
 

 
		
λ3 − I1λ

2 + 13 I1
2 − J2( )λ − I3 =0   (11) 

 
Eq. (11) probably provides the most fundamental statement of the principal 
stresses eigenvalue problem.  It is completely specified by the four 
invariants 
 

 

		

I1 =σ kk

I1
2 = σ kk( )2

J2 =
3
2 sijsij

I3 = σ ij

  (12) 

 
The two invariants I1 and I1

2 are more than just simple variations of each 
other.  Both are independently required in this eigenvalue problem of the 
principal stresses.  Each has separate status.  For example, I1

3 is also an 
invariant but it is of no significance for the eigenvalue problem.  While the 
principal stresses and their associated principal directions are important, the 
guiding invariants (12) are even more important.  This will be shown in the 
further developments of this paper.   



 
It is of further interest to observe that in contrast to the I2 situation, I3 in (11) 
cannot be expressed in terms of I1 and J2 through using I1

3 and I1J2.  This 
proves that physical behavior in solids does occur beyond that which is 
directly predictable from only distortional and dilatational stress states.  This 
will turn out to be of high importance in the treatment of materials failure. 
 
The classical treatment of principal stresses with the attendant eigenvalue 
problem is the founding principle for the entire field of mechanics of 
materials.  This eigenvalue problem for principal stresses (11) and the 
invariants (12) provides the basics tools for all further developments to be 
given here.  It is independent of any particular materials symmetry. 
 
The particular symmetry case of materials isotropy also has the same 
coordinate invariance for its properties and behaviors as the principal stress 
problem.  It follows that it is very likely that the related physical properties 
for isotropic materials will require the use of the four invariants in (12) or a 
subset of them.  Special interest here is in the behavior of strain energy and 
the failure for isotropic materials and how these relate to the eigenvalue 
problem of the principal stresses. 
 
 
3.   The Strain Energy for Isotropic Materials 
 
Now, taking attention to isotropic materials the classical strain energy will 
be formulated.  By common convention the term strain energy is used 
whether the energy is expressed in terms of elastic strains or elastic stresses.  
The interest here is in the stress case. 
 
The strain energy must be of a positive definite form.  It will be expressed in 
terms of the invariants in (12).  The only terms in (12) that comply with the 
positive definite requirement are the middle two terms in (12), thus 
 

 
		
U =

αI1
2

k
+
β J2
µ

  (13) 

 
Eq. (13) necessarily associates the bulk modulus with the dilatational 
invariant term and the shear modulus with the distortional invariant term.  
Nondimensional parameters α and β are to be evaluated by the usual 



methods.  The invariant I2 is of no relevance and could not be directly used 
here. 
 
It is found that the strain energy (13) is given by 
 

 
		
U = 16

I1
2

3k +
J2
µ

⎛

⎝
⎜

⎞

⎠
⎟   (14) 

 
Relation (14) will be converted to the alternative form involving the elastic 
modulus and Poisson’s ratio through 
 

 

		

µ = E
2 1+ν( )

k = E
3 1−2ν( )

  (15) 

 
Then finally for this form 
 

 
		
U = 1

3E
1−2ν( )
2 I1

2 + 1+ν( ) J2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
  (16) 

 
where I1 is given by (3) and J2 by (9).  Relation (16) is the benchmark strain 
energy form. 
 
Relations (14) and (16) are vastly simpler and more meaningful than those 
usually found for the strain energy of isotropic materials in the standard 
textbooks.  More important than that, the strain energy form (16) will next 
be shown to provide valuable guidance on how to proceed with the closely 
related forms for the associated materials failure theory. 
 
 
4.   Isotropic Materials Failure Theory 
 
The eigenvalue problem of the principal stresses is fundamental.  As a 
consequence the failure of an isotropic material must be expressed in terms 
of the four invariants in (12) or a subset of them.  It is likely that all four of 
them are involved with failure, as will be shown here. 



 
Failure generally represents the termination of the elastic range, whether 
strain hardening is involved or not.  This is the overriding requirement 
needed to proceed further. 
 
The obvious candidate failure criterion would be a limit on the strain energy.  
But that could not be correct because it would require that materials would 
fail in hydrostatic compression.  That certainly is not true, at least not within 
normal engineering limits. 
 
We are motivated to look for some quantity, call it the failure potential, that 
is related to the strain energy but is independent of it.  Furthermore, it must 
depend upon purely dilatational and distortional stress states, just as the 
strain energy does.  Since failure is here interpreted to be the cessation of the 
range of elastic behavior, the failure potential will be expected to be much 
like the strain energy (16) and it will involve two constants.  The J2 term in 
(16) is acceptable but the I1

2 term is not since that would just revert back to 
energy as the failure decider.  From the list of invariants in (12) the only 
dilatational alternative to I1

2 would be I1.  Thus we must take the failure 
potential as having the form 
 
 		αI1 +β J2 ≤1  (17) 
 
where these new α and β’s are to be evaluated in terms of common, 
fundamental and accessible failure properties.   
 
Since the invariants in (17) arise through the eigenvalue problem of the 
principal stresses, it seems likely that α and β in (17) will be calibrated by 
strengths in the form of principal stresses.  That is exactly what happens.  
The customary shear strength has no role to play here in the calibration 
process, nor should it.  The widely used effective stress terminology is 
motivated by shear stress failure but that is a misguided concept that could 
be misleading here and it will not be employed. 
 
The resulting forms for α and β in terms of the uniaxial tensile and 
compressive strengths, T and C, then give the completed failure potential as: 
 
Failure Potential (Polynomial Invariants) 
 



 
		
1
T
− 1
C

⎛
⎝⎜

⎞
⎠⎟
I1 +

1
TC

J2 ≤1   (18) 

 
I1 is the dilatational stress invariant (3) and J2 is the distortional stress 
invariant (8) and (9).  The failure result (18) is extraordinarily clear, concise, 
and compact.  This form is the same as that derived in Ref. [10] by a very 
different method, there named the polynomial invariants method. 
 
For T=C (18) becomes the Mises criterion, [9].  Otherwise there is an 
interaction between the two invariants in (18) that produces the means and 
modes of failure.  More of this will be said at the end of this section.  
Distortion and dilatation explicitly control everything in (18). 
 
Compare the strain energy (16) and the failure potential (18).  Both involve 
J2 but the strain energy includes I1

2 whereas the failure potential involves I1.  
Thus the strain energy and the failure potential have an intimate (but 
independent) relationship.  They could be said to be duals, both come from 
the invariants (12) of the eigenvalue problem, both involve only pure states 
of dilatation and distortion, and finally both (16) and (18) are completely 
expressed (calibrated) in terms of only the uniaxial stress properties of 
strength. 
 
Does the failure form (18) provide a mathematically and physically 
complete description of all possible failure modes for isotropic materials?  
The failure form (18) only uses two of the four fundamental invariants (12) 
that follow from the eigenvalue problem.  That certainly raises some doubts 
about the completeness of (18).  Those doubts are well founded.  Where is a 
fracture mode of failure?  It is not even implicitly involved in (18).  Fracture 
must also somehow explicitly be involved and included. 
 
In the present context, a widely acknowledged mode of fracture is given by 
 
 		σ 1 ≤T   
 
where temporarily σ1 is taken to be the largest principal stress.  However a 
failure criterion of this type has a major problem.  It would cut off part of the 
Mises criterion in the 1st quadrant of a biaxial stress state.  That would be 
unacceptable for very ductile materials. 
 



Physical intuition suggests that the fracture type criterion shown above 
would only apply for the more brittle range of materials but not for the more 
ductile type of materials.  There needs to be a specified cut off that separates 
the ductile and brittle materials classes.  The materials type is specified by 
the value of T/C.  The correct specification for the above fracture criterion is 
given by: 
 
Fracture Criterion 
 

 

		

For 0≤ T
C
≤ 12

σ 1 ≤T

σ 2 ≤T

σ 3 ≤T

  (19) 

 
where these are the three principal stresses, in any order.  If the cutoff value 
were taken as anything other than T/C=1/2 in (19) then there would be a step 
function discontinuity between the failure potential envelope (18) and the 
beginning of the fracture controlled envelope (19), as T/C is varied.  Such a 
jump behavior would be physically inadmissible.  This unacceptable 
behavior is most easily seen in two dimensional biaxial stress conditions, 
although it certainly covers all conditions.  The fracture cutoff value at 
T/C=1/2 is of major significance.  It provides the most basic and elementary 
natural division into ductile versus brittle materials. 
 
The two failure criteria (18) and (19) are complete and they are competitive 
in operation.  In any condition the more restrictive one controls the failure 
behavior.  The failure potential and the fracture form are independent 
requirements.  One without the other is not just incomplete, it would be 
incorrect.  But both together form a complete and comprehensive failure 
theory. 
 
Since (19) involves the principal stresses it is seen that all four invariants in 
(12) for the eigenvalue problem are involved in (19).  This is a further 
intimate connection between all three of these basic disciplines. 
 
It is advantageous to rewrite these controlling failure forms using 
nondimensional terms.  Take 
 



 
		
σ̂ ij =

σ ij

C
  (20) 

 
Then (18) and (19) become 
 

 

		

For 0≤ T
C
≤1

1−T
C

⎛
⎝⎜

⎞
⎠⎟
σ̂ 11 + σ̂ 22 + σ̂ 33( )

+12 σ̂ 11 −σ̂ 22( )2 + σ̂ 22 −σ̂ 33( )2 + σ̂ 33 −σ̂ 11( )2 +6 σ̂ 12
2 + σ̂ 23

2 + σ̂ 31
2( )⎡

⎣⎢
⎤
⎦⎥
≤ T
C

  (21) 

 

		

For 0≤ T
C
≤ 12

σ̂ 1 ≤
T
C

σ̂ 2 ≤
T
C

σ̂ 3 ≤
T
C

  (22) 

 
Relation (21) can be written in the alternate form 
 

 
		
1−T

C
⎛
⎝⎜

⎞
⎠⎟
σ̂ kk + σ̂ 11

2 + σ̂ 22
2 + σ̂ 33

2 −σ̂ 11σ̂ 22 −σ̂ 22σ̂ 33 −σ̂ 33σ̂ 11 +3 σ̂ 12
2 + σ̂ 23

2 + σ̂ 31
2( )⎡

⎣
⎤
⎦ ≤
T
C

 (23) 

 
The three areas of investigation here, the eigenvalue problem of the principal 
stresses, the strain energy, and the failure theory are now seen to be 
completely intertwined and mutually reinforcing in their validity.  The 
eigenvalue problem is the basic, all encompassing form leading to the other 
two areas through its invariants.  The strain energy and the failure potential 
are duals in their formation and function.  The completion of the failure 
theory by the fracture criterion follows directly from the full form of the 
eigenvalue problem.  It all is a complete and consistent formalism. 
 
At the most basic level, the present approach for developing failure criteria 
from the principal stress eigenvalue problem corroborates the drastically 
different approach followed in Ref. [10].  Taken together they coordinate to 



form an unshakable foundation for this general theory of materials failure.   
The validity and viability of this failure theory was established in Ref. [10]. 
 
The failure mechanisms embedded in the failure theory are those of shear 
bands, voids nucleation, and maximum principal stress fracture.  The first 
two failure mechanisms are implicit within the failure potential (18), voids 
nucleation through I1 and shear bands through J2.   The third one, fracture, is 
explicitly stated by (19). 
 
In sum, the principal stresses eigenvalue problem (11) and (12), the strain 
energy (16), and the failure theory (18) and (19) form a unified and cohesive 
treatment of the three disciplines.  This unusual confluence of the three very 
diverse physical behaviors brings each area as well as the whole into clear 
and strong perspective.  The first two areas are classical results and the third 
is a surprising and powerful consequence of them.  They were not 
understood and recognized as a single formalism until now.  This concludes 
the incredibly long gestation period for the third area.  After 200+ years of 
searching it is now ready and primed for deployment.  Failure theory has 
finally arrived. 
 
 
5.   Failure Due to Shear Stress With and Without Superimposed 

Hydrostatic Stress 
 
The failure potential (18) is based upon dilatational and distortional states of 
stress and their interaction.  In terms of applications of this failure theory 
there could be simple combinations of the two states of pure dilatation and 
pure distortion.  The simplest case of this type is that of the direct interaction 
of a shear stress state and a hydrostatic (positive or negative) stress state.  
Begin with the shear stress by itself. 
 
Failure Due to Shear Stress Only 
 
Take the shear stress at failure as given by S.  The failure potential (21) 
gives the failure as 
 

 
		
Ŝ ≤ 1

3
T
C

⎛
⎝⎜

⎞
⎠⎟

  (24) 

 



The competitive fracture failure from (22) is 
 

 
		
Ŝ ≤ T

C
  (25) 

 
These then give the complete failure specification as 
 

 
		
For 0≤ T

C
≤ 13 Ŝ = T

C
  (26) 

 

 
		
For 1

3 ≤
T
C
≤1 Ŝ = 1

3
T
C

⎛
⎝⎜

⎞
⎠⎟

  (27) 

 
Failure relations (26) and (27) are shown in Fig. 1 
 

 
 

Fig. 1   Shear stress failure 
 
It is seen from Fig. 1 that both the failure potential and the fracture criterion 
have distinct and vital functions.  The failure potential by itself would have a 



physically impossible infinite slope at the origin and the fracture form by 
itself would far overestimate the failure at T/C=1, the Mises material case.  
Both competitive failure criteria are essential.  Furthermore, the transition 
from brittle failure to ductile failure naturally occurs at T/C=1/3  in Fig. 1, 
for this particular stress state.  The corresponding ductile versus brittle 
division for simple tension is at T/C=1/2. 
 
Failure Due to Shear Stress Plus Pressure 
 
Now take the case of an imposed shear stress plus a superimposed pressure 
p.  The failure potential (21) gives the shear stress at failure S as 
 

 
		
Ŝ ≤ 1

3
T
C

⎛
⎝⎜

⎞
⎠⎟
+ 1−T

C
⎛
⎝⎜

⎞
⎠⎟
p̂   (28) 

 
while the fracture form (22) gives 
 

 
		
Ŝ ≤ T

C
+ p̂   (29) 

 
Then the failure stresses are given by 
 

 

		

For T
C
≥ 12 Ŝ = 28( )

For T
C
≤ 12 Ŝ = 28( )or 29( )whichever is less

  (30) 

 
The combined strength behaviors of shear stress plus pressure is given in 
Table 1. 
  



		Ŝ  Shear Stress at Failure 
 

 
		
T
C
=0 

		
T
C
= 13  

		
T
C
= 12  

		
T
C
= 23  

		
T
C
=1  

		p̂=0   0 1/3 0.408 0.471 0.577 

		
p̂= 13   1/3 0.577 0.577 0.577 0.577 

		
p̂= 12   1/2 2/3 0.646 0.624 0.577 

		
p̂= 23   2/3 0.745 0.707 2/3 0.577 

		p̂=1   1 0.882 0.816 0. 745 0.577 

 
Table 1   Shear failure stress 		Ŝ=S/C at superimposed pressure 		p̂= p/C 

 
 
From Table 1 it is seen that for a given T/C value, increasing pressure 
always increases the shear strength except at T/C=1 where the strength is 
independent of pressure.  But for a given value of pressure increasing the 
T/C values increases the shear strength at low pressures, but decreases the 
shear strength at higher pressures.  This may at first seem to be counter-
intuitive but on further thought it is required behavior, most easily viewed 
through this general failure theory.   
 
The general conclusion is that pressure enhances the shear strength and 
Table 1 shows the quantitative size of the effect.  For the materials type 
T/C=1/2 the pressure effect at p=C exactly doubles the shear strength at no 
pressure.  The pressure effect on the strength that is shown here is one of the 
most fundamental physical effects inherent in materials failure behavior. 
 
Failure Due to Shear Stress Plus Positive Hydrostatic Stress 
 
 Finally consider the case of shear stress with a positive state of hydrostatic 
stress being superimposed.  This has a very different behavior from the 
pressure case just examined. 
 



Take the hydrostatic tension as σ.  The failure criteria can be obtained from 
(28)-(30) with the pressure replaced by p= -σ. Consider three cases, all at 
T/C=2/3 but with 	σ̂ =0, 	σ̂ =1/3, and 	σ̂ =2/3.  Using (28) it is found that  
 

 

		

For T
C
= 23 , σ̂ =0 Ŝ = 1

3
=0.577

For T
C
= 23 , σ̂ = 13 Ŝ = 13

For T
C
= 23 , σ̂ = 23 Ŝ =0

  (31) 

 
With no hydrostatic tensile stress the shear strength is the largest.  At 	σ̂ =2/3 
the shear strength vanishes and the material actually fails under the tensile 
hydrostatic stress state by itself. 
 
Many other illuminating examples of failure are given in Ref. [10], but those 
given here are not only the simplest, they are the most basic and revealing 
examples of isotropic materials failure. 
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