
XXII.  LAMINATION THEORY FOR THE STRENGTH 
OF 

FIBER COMPOSITE MATERIALS 
 
 
Introduction 
 
The lamination theory for the elastic stiffness of fiber composite materials is the 
backbone of the entire field, it holds it all together.  A corresponding and related 
lamination theory for the strength of laminates would be equally important and 
useful.  It would complete the understanding of the behavior of fiber composite 
materials in its most important and prime form of usage, laminates. 
 
This research report extends the technical program established in Ref. [1].  In that 
work Christenen and Lonkar [1] developed failure criteria that were mainly 
intended for quasi-isotropic fiber composite laminates.  This work develops the 
much broader and much more generally useful failure criteria for wide classes of 
orthotropic fiber composite laminates. 
 
The quasi-isotropic laminates case is important because it is one limiting case of 
fiber composite laminations.  The other limiting case is the unidirectional form 
itself.  The class of orthotropy supplies the general and inclusive bridge of cases in 
between and including these two limiting cases.  General cases such as these have 
been treated in the large and highly publicized composites failure program of 
Hinton and Kaddour [2].  The end result of that program served more to show the 
utter and unrelenting complexity of the overall problem rather than providing any 
unified and directly applicable results. 
 
The following work will begin by recalling some previous results from Ref. [1] 
and then pursuing a very large scale extension of the method.  This will allow the 
treatment of the general case of orthotropic laminates where the degree of 
anisotropy in the plane of the laminate can be arbitrarily specified as necessary for 
a very wide range of layup patterns and problem specifications. 
 
At the lamina level the fiber composites form will be taken as highly anisotropic, 
appropriate to very high stiffness and high strength fibers (typified by carbon 
fibers) in a polymeric matrix.  It will be found that the failure criteria for the 
general orthotropic laminate is completely calibrated by only two fiber dominated 
failure properties at the unidirectional lamina or the tow level of the fiber-matrix 
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system.  Calibrating the failure theory for general orthotropic laminates by use of 
only two failure properties certainly would have been thought to be impossible.  
This seemingly intractable problem will be solved here, removing a large obstacle 
to meaningful fiber composites applications. 
 
The case of unidirectional fiber composites failure was treated in Ref. [3].  As 
already discussed, the complementary case of the failure of quasi-isotropic 
laminates was treated in Ref. [1].  Associated with these two works, then the 
present work completes the longstanding task by rigorously treating the failure of a 
very wide class of orthotropic laminates. 
 
This new work on composites failure could equally well be presented in a 
mechanics oriented materials journal or a composite materials journal.  The 
application is to composites but the methodology is totally mechanics based. This 
development would not be possible were it not for the insight and avenues of 
approach opened up by only the mechanics discipline.  The usual composites 
failure approach zeroes in on one particular failure mechanism and treats that in 
some, usually great detail.  The mechanics approach used here is much broader and 
more inclusive, but not at the expense of rigor.  The present approach will be found 
to be satisfyingly rigorous and general 
 
The primary reason for conducting this research and writing this paper is to 
provide a viable tool for use with computational mechanics.  Composites research 
sources seem to be pre-occupied with other matters and not interested in pursuing 
the general failure problem.  Perhaps the failure problem is considered by them to 
be too difficult or even impossibly difficult.  Nevertheless the problem desperately 
needs attention, solution, and subsequent application.  This work accepts the 
challenge to produce general failure results so that computational mechanics can 
then take over and open up new directions for the applications of fiber composite 
materials. 
 
 
Orthotropic Laminates Failure Theory 
 
In Ref. [1] Christensen and Lonkar derived the failure criterion for quasi-isotropic 
laminates.  It was shown to have the same form as that for three-dimensionally 
isotropic materials when in the 2-D state of plane stress.  It is given by 
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where T and C are the uniaxial strengths of the laminate.  Now rewrite this in 
slightly modified but equivalent form that will be helpful in the following 
orthotropic developments, as given by 
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In Ref. [1] the quasi-isotropic form in (2) was shown to generalize to the failure 
criterion for orthotropic laminates in plane stress as 
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where T11,C11,T22,C22  are the tensile and compressive strengths in the 1 and 2 stress 
directions and S12 is the shear strength.  The orthotropic form given in Ref. [1] 
appears a little different from that in (3) but it is equivalent. 
 
These five calibrating strengths are directly measurable from standard, single stress 
component 1-D tests.  Form (3) is remarkably simple for the failure criterion of 
fully and generally orthotropic laminates.  It will be developed even much further 
in the following derivation. 
 
For these further developments, temporarily return to the case of the quasi-
isotropic laminate, as treated in Ref. [1].  The failure criterion (1) only requires two 
strength properties to completely calibrate it.  These are the uniaxial tensile and 
compressive strengths T and C.  In a special development in Ref. [1] it was shown 
that the uniaxial strengths T and C for the laminate can be expressed in terms of 
the unidirectional fiber composites tow strengths as  
 
 T = Ttow

3
  (4) 

 
and 
 



 C = Ctow

3
  (5) 

 
These are physically realistic approximations that apply for fiber dominated 
systems.  The term “fiber dominated” means that the fibers are greatly stiffer and 
stronger than is the surrounding polymeric matrix phase of the composite material.  
In effect then the fiber phase is a completely one dimensional reinforcing agent, 
meaning that the fiber contribution to the stiffness and strength of the laminate is 
purely through its unidirectional, axial direction contribution.   
 
A slightly more complicated quasi-isotropic form than (5) for the compressive 
strength property was derived in Ref. [1].  The simpler form (5) will be used here.  
It is here considered that the form in Ref. [1] is more appropriate for use with the 
unidirectional compressive strength being obtained from a very thin lamina form 
allowing the kink band mechanism of failure whereas the form (5) is more 
appropriate for use when the unidirectional compressive strength as determined 
from a monolithic type test specimen.  The form (5) will be used here as being 
representative of the compressive strength obtained directly from the impregnated 
fiber tow as manufactured rather than from the further processed lamina form. 
 
Next the fiber dominated forms (4) and (5) for the quasi-isotropic case will be 
generalized for use with the orthotropic case.  This will be found to be a major and 
completing step forward in understanding general composites laminate strength 
behavior. 
 
The orthotropic laminate will be taken as the standard 0, 90, ± 45 degree layup 
pattern as shown in Fig. 1. 
 



 
 

Fig. 1  Lamination pattern 
 
 
Take c0, c45, c−45, and c90  as the specified volume fractions of the four lamina 
orientations in the orthotropic laminate.  For orthotropic symmetry it is required 
that  
 
 c−45 = c45   (6) 
 
Thus it follows that 
 
 c0 + 2c45 + c90 = 1   (7) 
 
The objective here is the generalization for fiber dominated systems from the 
quasi-isotropic case (4) and (5) to the orthotropic case.  The five calibrating 
strengths T11,C11,T22,C22, and S12  will now be derived in terms of the general volume 
fractions c0, c90, and c45  and they will be left open to later specification for particular 
cases. 
 
First consider the shear strength S12 .  For the fiber dominated system the 0 and 90 
plies make no contribution to the shear strength, only the 45 plies give shear 
resistance.  Furthermore the shear strength must be proportional to the volume of 



the active material in shear deformation and thus must be linearly dependent on c45
.  Then take 
 
 S12 =αc45 TtowCtow   (8) 
 
where α  is an unknown coefficient to be determined.  The dependence shown in 
(8) on Ttow and Ctow  follows from the quasi-isotropic form for S from (1) as 
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Lastly parameter α  in (8) at c45  = ¼ then requires 
 
 α = 4

3 3
  (10) 

 
to recover the form in (9).  This completes the determination of orthotropic S12 .  
The other 4 cases for the uniaxial strengths are considerably more complex to 
determine. 
 
Before proceeding to the next cases it should be noted that this fiber dominated 
approach can give some strength properties as being zero.  For example, if there 
were no ± 45 plies then the shear strength (8) would vanish.  Of course this just 
would mean that the failure is totally matrix controlled and would be of very low 
strength capability compared with the fiber dominated and controlled failure 
modes. This would further mean that this would be a very poor design and should 
be discarded. 
 
The path to be followed for the determination of T11,C11,T22,C22  is exactly like that 
of the classical lamination theory used with stiffness.  But instead of stiffness, 
strength will be the determining factor.  With stiffness the lamination theory 
procedure usually requires a computer to keep account of the bookkeeping for the 
tensor transformations.  But for the fiber dominated strength problem the 
procedure is much simpler since the fibers are one dimensional load bearing 
members.  In fact it is rather intriguing to watch the theory unfold and lead to 
surprisingly simple and clear results. 
 
First for the determination of the uniaxial strength T11  take a unit strain in the T11  
direction.  This induces a strain and consequently a fiber direction stress in the ± 45 



 lamina, for these fiber dominated lamina.  Now resolve this c45  stress into the 
coordinate axes directions using the tensor transformations.  For no transverse 
stress in the laminate to exist, the 2 direction stress in the ± 45 lamina must be 
resisted by the 90 degree lamina.  This leads to the determination of the orthotropic 
Poisson’s ratio ν12  as 
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Similarly it is found that 
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1

1+ 2 c0
c45
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When c45 = 0  then from (11) and (12) ν12 = ν21 = 0  as must be the case for the fiber 
dominated system in a cross-ply laminate.  When c90 = 0  in (11) then ν12 = 1  
meaning that there is no resistance to lateral strain change.  Similarly when c0 = 0  
in (12). 
 
Finally the resolution of all the fiber direction stresses into the 1 direction gives the 
uniaxial tensile strength in that direction as 
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The completing shear strength from (8) and (10) is given by 
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Relations (13)-(17) are the full strength properties needed to calibrate the general 
orthotropic failure criterion (3).  They also are of great interest in their own right 
for an orthotropic laminate. 
 
The uniaxial strengths (13) - (16) can also be written in terms of the Poisson’s 
ratios in the compact forms 
 
 T11 = c0 +ν12c90( )Ttow   (18) 
 
 C11 = c0 +ν12c90( )Ctow   (19) 
 
 T22 = c90 +ν21c0( )Ttow   (20) 
 
 C22 = c90 +ν21c0( )Ctow   (21) 
 
where ν12 and ν21  are given by (11) and (12).   
 
The basic relations (3) and (13) – (17) are powerful results.  Not only do they 
represent the solution to a previously unsolved, very important problem, they do so 
in an exceedingly simple, clear and concise form.  They comprise the orthotropic 
lamination theory for the strength of fiber dominated composite materials.  
Contrary to the author’s initial and cursory  expectation, this much more complex 
problem and solution is fully as rigorous as the specialized quasi-isotropic results 
in [1].  They include the quasi-isotropic forms as a special case. 
 
The uniaxial and shear strengths (13) – (17) satisfy all the necessary consistency 
tests.  These are as follows.  First note that for a  unidirectional lamina (13) gives 
T11 = Ttow  as must occur.  The strengths (13) – (17) also have the necessary forms for 
a fiber dominated  cross-ply laminate necessarily having no shear resistence.  The 
complementary case of only ± 45’s shows the “scissoring effect with no resistance 



that must occur.  Finally, when relations (13) – (17) are reduced to the quasi-
isotropic case by taking c0 = c90 = c45 = 1/ 4  the correct quasi-isotropic results are 
recovered from (13) – (17), namely (4) and (5). 
 
This fiber dominated orthotropic failure theory can be derived for any orthotropic 
laminate, not just for 0, 90,  ± 45 laminates.   The forms are a little more complex, 
but entirely manageable.  Such results will be presented in due course.  But the 0, 
90, ± 45 case is the most important and the simplest case and the one that 
completely and naturally conforms to orthotropic symmetry.  It is emphasized here. 
 
The five strengths in (13) – (17) are entirely specified by only the two tow 
strengths for any orthotropic, 0, 90, ± 45 layup.  Of course this result is restricted to 
fiber dominated systems such as carbon fiber, polymeric matrix composites. 
 
The enabling operation for this unexpected development is that these five 
calibrating properties for the orthotropic case are only one dimensional problems.  
In these cases one can reason which lamina orientations in the four directions are 
applicable for fiber dominated systems and which are inapplicable for each of the 
five properties.  This operation could not be accomplished if it involved biaxial 
stress conditions.  Effectively critical strain in the 1-D fiber direction specifies the 
failure condition in the uniaxial cases aligned with the symmetry axes. 
 
It should be emphasized that fiber dominated systems cannot sustain all stress 
states.  For example for c±45 = 0  then (13) – (15) cannot support a shear stress state.  
But this simply means that the matrix phase controls failure for such a condition.  
That would be of no interest for fiber composites.  The fiber dominated state must 
be designed to support the load under all anticipated loading conditions. 
 
The final and complete statement of failure criteria for orthotropic laminates is 
given by the failure criterion (3) with the five calibrating strengths specified by 
(13) – (17) as expressed in terms of the two tow strength properties.  To imagine 
that the complete strength specification for any stress state in the orthotropic 
laminate could be specified from only two experimental measurements would have 
seemed impossible before the derivation in this paper. 
 
 
 
 
 
 



A Specific Example and General Failure Results 
 
Everything up to this point up to this point has been motivated and necessitated by 
original research.  Now some interesting consequences from the general theory 
will be developed and then used in an example. 
 
Full blown design procedures for failure would normally involve investigating 
many different states of stress that could occur in practice.  The simplest possible 
problem of this type will be opened here by prescribing the allowable stress states 
for the two uniaxial tensile stresses and for the shear stress, taken as individual 
conditions.  After that the more general case will be taken up. 
 
As a simple but realistic example take the volume fractions of the lamina 
orientations as 
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Thus in terms of volume fractions the anisotropy ratio is 
 
 c0
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From (13) – (17) it follows that the tensile uniaxial and shear strengths are given 
by 
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With similar forms for C11 and C22 . 
 



From (24) the anisotropy ratio in strengths has the value 
 
 T11

T22
= 3   (25) 

 
Thus the degree of strength anisotropy is a little less than the anisotropy ratio in the 
volume fractions (23) but both are highly anisotropic in this example. 
 
To go further with a general example take realistic tow strengths for IM-7 like 
carbon fiber polymeric matrix unidirectional strength properties as 
 

 
Ttow = 2700 MPa

Ctow = 1700 MPa
  (26) 

 
For the orthotropic laminate specified by the volume fractions (22) the condition is 
effectively that of 4/7 of the lamina being in a quasi-isotropic arrangement with the 
additional 3/7 of the lamina added to the 0 direction lamina.  The uniaxial and 
shear strengths are then given by 
 

 

T11 = 1671MPa

C11 = 1052

T22 = 557

C22 = 351

S12 = 236

  (27) 

 
The corresponding quasi-isotropic problem properties are given by 
 

 

T = 900 MPa

C = 567

S = 412

  (28) 

 



Finally the quasi-isotropic properties (28) are put into the failure criterion (1) and 
the orthotropic properties (27) are put into the orthotropic failure criterion (3)  
giving the resulting failure envelopes shown in Fig. 2, with σ 12  taken as zero. 
 
 

 
 
Fig. 2    Failure for fiber dominated unidirectional, intermediate, and quasi-

isotropic laminates 
 
 
Also shown in Fig. 2 is the representation of the unidirectional tow properties 
given by (26).  Fig. 2 graphically and dramatically shows the progression starting 
from the unidirectional fiber composites strengths going to and through an 
intermediate form and finally coming to the other limiting case, the quasi-isotropic 
form.  This fiber dominated formalism would not be expected to be realistic near 
the unidirectional limiting case since it does not include the transverse matrix 
controlled effects.  Other than the need for the micro scale matrix controlled 
properties the present failure theory applies to and for all orthotropic layup 
patterns. 
 
Complete and comprehensive design applications would involve trade offs 
between specification of the volume fractions for the four fiber orientations using 
the lamination rules (13) – (17) and then the failure criterion (3).  Unsatisfactory 



results would then require further iteration.  Using all this in a numerical program 
for analysis of an entire structure would complete the process.  For this to occur 
efficiently and effectively it would require a sophisticated numerical algorithm.  
This new lamination/strength theory provides the vital link in the whole process. 
 
With regard to applications and design for applications, it would not be appropriate 
to use the present fiber dominated methodology for problems having any of the 
three lamina volume fractions near zero.  That condition would require some 
explicit account of the matrix properties.  Also, in any actual application it would 
always be necessary to have experimental certification of the general results. 
 
 
Further Verification of the Orthotropic Failure Criterion 
 
Quasi-isotropic  laminates are a special case of orthotropic laminates.  The 
previous verification with test results was given in Ref. [1] for the quasi-isotropic 
case.  That comparison was for a biaxial spread of data, mainly in the range of 
compressive-compressive stresses for the principal stresses applied to the laminate.  
The present verification will involve the state of uniaxial tensile stress at failure. 
 
The rationale behind the derivation of the formulas (4) and (5) relating tow failure 
properties to uniaxial laminate failure properties is as follows.  In the tow type 
failure specimen the strain at failure is given by 
 
 ε f = Ttow

Etow

  (29) 

  
where Etow  is the elastic modulus of the impregnated tow material.  In the quasi-
isotropic laminate at failure the strain in the lamina that first fails is taken to be the 
same strain as occurs in the tow specimen.  So then for the quasi-isotropic laminate 
in uniaxial tensile stress 
 
 T

E
= ε f   (30) 

 
with E being the laminate elastic modulus.  Thus from (29) and (30)  
 
 T

E
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Rearranging (31) gives 
 
 T

Ttow
= E
Etow

  (32) 

 
From (32) it follows that if E/Etow= 1/3 can be proven from testing data then it 
further follows that T/Ttow= 1/3 thus verifying (4).  Similar arguments would 
follow for the compressive case of (5). 
 
It is much easier and more reliable to measure non-destructive elastic properties 
than it is to measure failure properties.  Thus the proof of E = Etow/3 for the quasi-
isotropic laminate will suffice to prove (4) and (5). 
 
The elastic properties for a quasi-isotropic laminate have been quite exhaustively 
measured by Van Otterloo and Dayal [4].  The values for the elastic modulus E 
were measured by both ultrasound and mechanical means in 11 different directions 
in the layup.  The mean value for E from the 22 tests was 
 
 E = 58.5GPa Measured   (33) 
 
If only ultrasound data were used the mean was 63.1 GPa. 
 
The corresponding modulus of the tow material was measured as Etow= 178.4 GPa.  
Using the formula 
 
 E

Etow

= 1
3

  (34) 

 
which is from Ref. [1], Eq. (31), with E11 = Etow for the fiber dominated system 
then gives 
 
 E = 59.5GPa Predicted   (35) 
 
Thus the comparison of (33) and (35) provides the further verification of the failure 
theory. 
 
 
 



The Next Step 
 
The basic research problem of the development of failure theory for fiber 
composite laminates has now been completed and consummated.  This does not 
however terminate interest in the problem.  It actually represents the beginning of a 
new phase to be used in the applications of fiber composite materials.  A major 
step in that direction will be to develop a complete and comprehensive design 
methodology for fiber composite laminates.  Using the results of this paper, this 
consolidation will be given in a subsequent paper and it will involve both the 
stiffness and the strength of fiber composite laminates in a form directly 
appropriate for applications.  
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