
VIII. FRACTURE MECHANICS 
 
 
 The field of fracture mechanics is highly developed and widely 
applied.  There are many excellent sources of information on the subject and 
an independent treatment here is certainly not needed.  There does however 
seem to be some confusion about the separate roles of fracture mechanics 
and failure criteria.  This section considers some of the issues, and seeks a 
clarification of the separate and distinct capabilities of the two disciplines. 
 
 The terminology  “failure criteria” is as introduced in Section I, as 
used in this entire website, and consistent with common usage.  In jointly 
considering failure criteria and fracture mechanics some basic and obvious 
questions are as follows.  Are failure criteria and fracture mechanics, as 
commonly practiced, completely independent fields?  Alternatively, are they 
largely independent, but with some degree of overlap? 
 
 Another question is foremost in considering fracture mechanics and 
failure criteria.  Is one approach more general and inherently superior to the 
other, as is sometimes said?  This coordinated look at the two fields begins 
with a highly concentrated summary of the remarkable development of the 
field of fracture mechanics. 
 
 
Fracture Mechanics Development  
 
 It all originated with Griffith in 1921.  He recognized that flaws could 
induce failure in materials and he posed and solved the idealized problem of 
a single crack in an infinite two-dimensional, isotropic, elastic medium 
under transverse load.  The famous solution, obtained from the energy 
balance principle, is given by 
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where ! is the far field stress causing the crack to open and grow unstably 
under plane stress conditions with “a” being the half crack length and " 
being the classical surface energy due to the breakage of bonds in the 
generation of new crack surface.   
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 In considering applications to glass it was found that the concept and 
form of (1) is correct and the prediction of the failure load level was 
reasonable using the classical surface energy " for glass.  However for other 
materials, especially ductile metals, their values for " can greatly 
underestimate the actual energy required to extend the crack.  
 
 Much later in the 1950’s Irwin generalized the form of (1) by 
introducing the macroscopic energy release rate, G, as an independent 
property.  Thus for the same central crack problem 
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where 
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with U being the  total potential and A the crack area. 
 
 Going even further, Irwin greatly expanded the utility and 
applicability of the method by introducing the stress intensity factor with 
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where this is the form of the stress field near the linear elastic square root 
singularity.   KI in the above mentioned central crack problem is given by 
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In more general problems then 
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for Mode I crack opening conditions.  Similar forms follow for the two shear 
modes, II and III, and for plane strain.  The values of # can be found for any 
problem of interest with characteristic dimension ”a”.   
 

The criterion for crack instability is then given by 
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or simply 
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KI = KIc        (7b) 
 
where KIc can be viewed as a property of the material, the fracture 
toughness. 
 
 The treatment just outlined follows from linear elastic analysis.  
Griffith provided the conceptual breakthrough and Irwin the follow through 
with an imaginatively organized, general methodology. This approach 
depends upon small scale yielding/damage as existing only in the vicinity of 
the crack tip and is referred to as linear elastic fracture mechanics.   
 

The method recognizes that linear elastic singularities do not really 
exist, but still creatively uses them as the normalizing agent common to all 
cases of its type.  The entire formalism is elegant, self contained, and it 
represented a huge step forward in understanding the failure of materials in 
the presence of stress magnifying flaws, defects and cutouts. 
 
 In effect, the above treatment represents the first part of the 
development of the field.  The second part represents the approach to be 
taken when small scale yielding does not apply.  That is, when the material 
yielding is over a region of about the same size as the crack or even over a 
larger region.  This situation is especially important with ductile metals, and 
it will be summarized next.  General treatments of fracture mechanics can be 
found in many sources such as Kanninen and Popelar [1], Broberg [2],  Suo 
[3], and Anderson [4]. 
 
 Continuing now with the case of large scale yielding, Rice [5] 
recognized that a wholly different and new approach would be required.  He 
showed that the full plasticity problem could be simulated by the more direct 



nonlinear elasticity problem in the cases of proportional loading.  Then with 
an innovative use of a path independent line integral, the J integral, he 
formulated the fracture problem in a completely different and more tractable 
manner.  In the case of small scale yielding and for linear elasticity the J 
integral method gives the value of the contour integral as 
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 This development then opened the door to using this method in the 
much more complicated nonlinear case (and linear as well) usually using 
power law forms to represent the nonlinear constitutive behavior.  This 
theoretical synthesis by Rice of all the elements of fracture mechanics 
completely consolidated the field and further enlarged its utility, as shown 
by subsequent activity.   
 

Expanding on this class of nonlinear problems, Hutchinson [6] and 
others developed a powerful approach and methodology for proceeding in 
general.  Also, it should be observed that Rivlin and Thomas formulated 
fracture mechanics as explicitly applicable to highly nonlinear elastomers.   

 
Much contemporary work has centered around models of the 

nonlinear conditions and the three dimensional effects in the crack tip 
regions, especially at interfaces involved in the debonding of dissimilar 
materials.  All these developments and contributions aggregate to a complete 
and widely used methodology for treating crack instability failure. 

 
 

The Two Failure Theories 
 
 Fracture mechanics thus provides a highly useful method for 
approaching and solving many failure problems.  Alternatively many 
sources as well as this website show that failure criteria also provides a 
viable and comprehensive method for solving many failure problems.  How 
should one approach the question of which formulation to use with a 
particular problem?  The key to answering this question lies with the concept 
of homogeneity, which was extensively discussed in Section I.   
 



At some sufficiently large scale, most of the standard materials classes 
are taken to be homogeneous.  Usually this scale is the same order as the 
dominant scale of the applications of interest.  At much smaller scales a new 
and vivid landscape of flaws, defects and irregularities are to be seen.  But at 
the macroscopic scale of application there exists a complete suite of 
homogeneous material properties, the intrinsic mechanical and thermal 
properties, that control behavior at this most common scale.  
 
  It is at the common scale of homogeneity of the material that most 
failure problems are most usefully posed.  Of course the macroscopic 
strength is profoundly affected by the subscale state of flaws, but not just by 
a single, idealized one of them.  There is a whole distribution of them 
contributing to and causing failure at the macroscopic scale of the 
homogeneous material. 
 
 However, there is another independent scale of relevance and control 
that must also be considered.  This scale emerges only in the particular 
problem of the intended application.  This scale is that which implicitly 
governs the gradients of the applied stress state.  If the gradients of the stress 
state (relative to the scale of the homogeneity of the material) are great, then 
fracture mechanics may be called for.  If these stress gradients are shallow to 
moderate, then failure criteria are in order.   
 

In the above context, failure criteria are defined and derived for the 
failure of homogeneous materials under homogeneous stress states.  In effect 
failure criteria represents the completion of the constitutive specification for 
the homogeneous material.  Of course the failure criteria and the other parts 
of the constitutive equations are then used in applications involving stress 
gradients so long as these gradients are not extreme.  This is the simplest, 
most straightforward statement of the basis for the failure criteria 
methodology. 
 
 Is there an arbitrarily sharp division of scale between these two 
conditions of applicability – not likely.  But it is usually fairly obvious 
which case is present in a given problem.  Stress conditions around sharp 
cracks and corners belong to the first group.  Most other problems without 
extreme geometric curvature features fall into the second group.  Thus it is 
both the scale of the homogeneity of the material and the scale (gradient) of 
the possible inhomogeneity of the stress state, extreme versus moderate, that 
helps decide which theory to use. 



 Possibly all this makes the decision process seem more complicated 
than it should be or actually is.  Good judgment usually is enough to render 
the decision.  Two examples will now be given, one where fracture 
mechanics is obviously the correct approach and one where the use of failure 
criteria is clearly called for.  Interest here is only with examples representing 
important, practical applications, not obscure problems of no relevance or of 
misleading status. 
 
 
Fracture Mechanics Example 
 
 The problem illustrating the application of fracture mechanics is that 
of the critical size of an edge crack in a load carrying structural member.  
Typically cracks form and grow near the edges and surfaces that are formed 
in processing and fabrication stages.  The explicit problem is that of an edge 
crack as shown in Fig. 1. 

 
  Fig. 1  Edge crack 



 
 
 Often cracks such as these grow under low level fatigue conditions.  
The question is at what crack size “a” does the crack under constant load 
become unstable and cause failure.  The governing fracture mechanics form 
is (6) and for this problem of the edge crack it is given by the  stress 
intensity factor 
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KI =1.12 "# a      (9) 
 
To pose a specific problem, take the working stress level as 
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" = 200 MPa 
 
For aluminum the critical stress intensity factor is about 
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KIc = 25 MPa m  
 
Combining these last three equations gives the critical crack size “a” as 
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a = 3.97 mm  
 
This result is the critical crack size as found from linear elastic fracture 
mechanics.  For significant plasticity behavior, as would be expected in this 
problem, the corresponding critical crack size would be less than this value, 
thus 
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a < 4 mm  
 
So it is found that the critical crack size for this problem would certainly be 
less than 1 cm, probably much less. 
 
 Although the explicit fracture mechanics formulas have been used 
here to estimate the critical crack size for a particular problem, that is not 
how it would normally be done in practice.  Usually there are industry 
standards for the maximum allowable crack size in particular classes of 
problems and these have been established from extensive data bases.  
Nevertheless, this latter procedure still represents an explicit and critical use 
of fracture mechanics.  In nearly all safety related applications there are very 



comprehensive programs and protocols for detecting dangerous cracks and 
flaws and damage in order to prevent sudden fracture mechanics types 
failures.   
 
 
Failure Criterion Example 
 
 The problem illustrating the necessary use of failure criteria is that for 
the single most basic problem in composite materials technology.  This 
problem is that of the single very stiff and strong spherical inclusion in an 
elastic medium under far field stress conditions, the dilute suspension case.  
This is the fundamental problem for the effective stiffness problem in 
elasticity as well as the effective viscosity for dilute fluid suspensions.  The 
strength problem in the elasticity context is the complement of the effective 
stiffness problem.   
 

To carry out this strength analysis, the three dimensional elasticity 
solution is needed for the infinitely stiff spherical inclusion in the infinite 
elastic medium under far field uniaxial tensile stress.  Fig. 2 shows the 
problem of interest. 

 
 

 
 

Fig. 2 Rigid spherical inclusion in an infinite elastic medium 
 
 



 Finding the exact elasticity solution is not a trivial exercise.  The 
stresses in the elastic medium are found by solving the governing coupled 
partial differential equations following a similar method given by 
Christensen [7] for the effective shear stiffness of the same constituents. 
 
  Perfectly continuous interface conditions are assumed.  In general the 
stresses are a maximum at the interface with the spherical inclusion of radius 
“a”. In spherical coordinates with the $=0 axis being in the direction of the 
far field uniaxial stress, !, then at r=a the stresses are found to be 
 

! 

" r =
3 1#$( )
4 #5$( )

3
1+$( )

#
5
2
sin2%

& 

' 
( 

) 

* 
+ "

"% =", =
3$
4 #5$( )

3
1+$( )

#
5
2
sin2%

& 

' 
( 

) 

* 
+ "

" r% = #
15 1#$( )"
2 4 #5$( )

sin% cos%

   (10) 

 
The other two stress components vanish identically because of symmetry.   
 

Often in 3-dimensional elasticity solutions the results take especially 
simple forms when Poisson’s ratio has the value  %=1/5.  In this case (10) 
becomes 
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The value %=1/5 represents that for some glass and  ceramic materials. 



 In composite materials, the very stiff and strong inclusions are usually 
used within a polymeric matrix phase.  The strength problem therefore will 
be taken for a quite glassy polymeric matrix material such as a standard 
epoxy resin with typical properties of 
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These properties and the stresses (10) at r=a and at $=0 will be used in the 
general, isotropic material failure criterion,  Eq. (1), Section VII, repeated 
here as 
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(12) 
 

The principal stresses in (12) are normalized by the uniaxial compressive 
strength C.  This procedure then gives the strength result for the problem of 
Fig. 2 as 
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" = 0.428T  
 
Thus the local failure occurs, and in this brittle circumstance likely leads to 
overall failure, when the applied far field uniaxial tensile stress is between 
1/3 and 1/2 the value of the tensile strength of the polymeric matrix material.  
This is the effect of the stress concentration caused by the rigid inclusion.  It 
can only be obtained quantitatively through the failure criterion since more 
than one component of stress is operative 
 
 In general, very stiff inclusions enhance the effective stiffness of the 
carrier matrix material.  However, contrary to popular belief, in some cases 
and in this particular example the strength properties are degraded by the 



presence of the “reinforcing” inclusion(s).  The problem becomes a trade-off 
between stiffness and strength. 
 
 
Assessment 
 
 These two examples are typical of a great many realistic situations.  
There is a large array of very important problems that are covered by failure 
criteria, but there is an equally large and important collection covered by 
fracture mechanics.  Neither approach can be said to be more important than 
the other.  They both are vitally important, and the two fields constitute 
complementary approaches in solving and codifying the critical failure 
problems involved in materials applications. 
 
 So there are two independent methodologies for dealing with failure, 
fracture mechanics and failure criteria. The basic properties for both fields 
are needed in order to completely characterize the performance capability 
for any particular material in any particular application.  It is interesting that 
there are parallel features shared by both of them.  Fracture mechanics 
includes both brittle and ductile fracture behaviors, while failure criteria 
accommodates both ductile flow and brittle (and ductile) fracture for 
different materials types in different regions of stress space.  To this extent 
there is an overlap between the two approaches.  However, the differences 
are far greater than this superficial similarity.   
 
 Failure criteria, as developed here, is the rigorous theory of failure 
behavior for homogeneous materials under quasi-homogeneous (not 
extremely inhomogeneous) stress states.  Fracture mechanics is an equally 
rigorous theory of failure behavior for the failure of structures (sometimes 
very simple structures) that always include a region of an extremely 
inhomogeneous stress state, the stress intensity zone, surrounding a crack or 
crack-like boundary condition.  The term “structures” is used here rather 
than “materials” because boundary value problems are involved in the 
determination of the stress intensity factors.  Both theories are often used 
beyond the narrow range of their derivations and this becomes a matter of 
experience and judgment in applications.   
 
 Will there ever be a complete, general theory of failure that subsumes 
both of these approaches?  It may be possible but it is very unlikely.  
Attempting such a unified development would be an exceedingly difficult 



undertaking. There is great utility as well as considerable beauty in these two 
carefully constructed, carefully circumscribed, simpler theories: fracture 
mechanics and failure criteria. 
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