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Introduction 
 

By far the most prominent recent activity on the failure of fiber 
composite materials has been the World Wide Failure Exercise, WWFE. 
Many publications have been involved in the exercise over the course of 
many years. All can be accessed through the WWFE-II, Hinton and Kaddour 
[1]. The high profile WWFE program provides a suitable starting position 
for the investigation to be given here. 
 

The WWFE was originally chartered to straighten out the existing 
state of chaos with composites failure and it was expected to converge to the 
best general model of failure. It did not do so. There could be many 
contributing reasons for this but one of them was a complete reliance on test 
data of unproven reliability. This then lead to a rigid adherence on 
quantifying how close each and every failure model of the many considered 
could replicate the data. Metrics were devised to establish the relative merit 
of each model on that basis. The inevitable consequence of this was to favor 
and promote models with many parameters and extremely broad flexibility. 
The model judged to be the best was said to have an incredible 50 
parameters.  Others had even more. The so judged top 4 models (all of them 
parameters intensive) were actually even declared to be nearly ready for 
general applications. 
 

Such models are totally empirical and add little or nothing to the 
understanding of composites failure. There were no special insights or 
revealing developments in that approach. There probably was much of good 
intention in the initial effort but it ended up being obscured by the misguided 
approach to evaluation. See Christensen [2] for a very detailed critical 
documentation of the entire WWFE program. 
 

Despite its shortcomings the WWFE does offer some lessons on 
where to go, or at least where not to go. Most importantly the WWFE raises 
the following fundamental question. Is it possible to develop and derive a 
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rational and general failure criterion composed only of basic and standard 
strength properties of the material and completely devoid of adjustable 
parameters and/or unjustified assumptions? Of course this refers to aligned 
fiber composite materials, but the same bottom line question could be asked 
of isotropic materials as well. Essentially this question asks if it is possible 
to pursue materials failure as a scientific investigation as opposed to a 
parameters exercise.  The discourse here will begin with the failure of 
isotropic materials as providing the absolutely necessary background for the 
prime interest in fiber composite materials. 

 
Finally, it should be recognized that any new fiber composites failure 

theory remains un-validated without experimental evaluation.`  This paper 
lays out the full failure theory and then finishes with a demonstration and 
application to first ply failure.  The experimental evaluation will come in the 
second and following paper which will use this new failure theory to predict 
total failure of the laminate.  It is only in the case of total failure where there 
is reliable and significant experimental data. 
 
 
Isotropic Materials Failure 
 

It could hardly be imagined that one could correctly treat the failure of 
fiber reinforced composite materials without first having a thorough 
understanding of the failure of isotropic materials. Unfortunately the failure 
of isotropic materials has had a long and difficult and frustrating history. 
Over the span of history, isotropic materials failure has gone through the 
same phases of frustration as has occurred with composites in recent years. 
Only the yielding of ductile metals ever was or now is well understood. For 
more general isotropic materials, over the long term, failure has been a 
complete mystery with sporadic periods and bursts of great activity but no 
successful results. Only very recently has the subject yielded to a rational 
treatment, ultimately giving an astonishingly simple form for its failure 
theory. 
 

The theory of failure for isotropic materials was recently developed by 
Christensen and presented in the book on the subject, [3]. The theory was 
fully verified and thoroughly treated in Refs. [3] and [4]. The main form of 
the isotropic materials failure theory that is of relevance to fiber composites 
is the polynomial invariants method of deriving the failure criteria. The end 



result forms will be stated here as necessary background for the fiber 
composites case. 
 

The polynomial invariants failure criterion for isotropic materials is 
given by 
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where 𝑇 and 𝐶 are the uniaxial tensile and compressive strengths.  The first 
term in (1) is the first invariant of the stress tensor and the second term is the 
second invariant. Symbol 𝑠!" is the deviatoric stress tensor and the stresses 
are nondimensionalized by the compressive strength 𝐶, 
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𝜎!"
𝐶

 (2) 

 
Remarkably the failure theory is fully calibrated by only two strength 
properties 𝑇 and 𝐶. There are no empirical parameters. 
 

The failure criterion (1) when written in component form is from Eq. 
(4.16) of Ref. [3] as 
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where stress is now stated in dimensional form. 
 

It is not possible to specify the shear stress at failure, 𝑆, independently 
of 𝑇 and 𝐶. It is uniquely determined by the failure criterion (3) by taking all 
stresses as zero except 𝜎!" = 𝑆, then yielding 
 

𝑆! =
𝑇𝐶
3

 (4) 

 



The fact that 𝑆 is not independent of 𝑇 and 𝐶 will have a direct and 
fundamentally important counterpart in the coming theory of failure for fiber 
composites. 
 

The failure criterion (1), (3) is the rigorous form to be used for the 
failure of the isotropic polymeric matrix phase in fiber composites. This is a 
further deep and significant tie between the theory of failure for isotropic 
materials and that of fiber composite materials. 
 

Finally with regard to isotropic materials failure, it is of importance to 
recognize that the failure theory is fully calibrated by only two strength 
properties, the same as the number of independent elastic properties for 
isotropy. The fact that the number of independent failure properties is the 
same as the number of independent elastic properties is not just a 
coincidence. It is inherent in and a direct consequence of the method of 
derivation of the failure criteria by the polynomial invariants method, see 
Ref. [3]. This basic relationship will have important consequences for the 
case of fiber composite materials, to be given next. 
 

With the successful treatment of the failure of general, isotropic 
materials, there finally is a realistic argument for and solid guidance for 
proceeding to treat the failure of anisotropic fiber composite materials. 
 
 
 
Unidirectional Fiber Composites Failure 
 

The unidirectional fiber composites failure criteria are derived by the 
same method, the “failure invariants theory”, FAIT, as was used with 
isotropic materials in the preceding section. The steps of the derivation will 
be given next. 
 

The failure criteria are for highly anisotropic fiber composites. The 
restriction to the condition of high anisotropy applies to both stiffness and 
strength. This condition is appropriate for carbon fiber polymeric matrix 
composites but it may not apply to glass fiber composites. The explicit 
polynomial invariants method for the highly anisotropic conditions for 
transversely isotropic symmetry requires decomposition of the failure 
criteria into two parts, as derived in Refs. [3] and [5]. These are the fiber 
controlled criterion and the matrix controlled criterion as given by 



 
Fiber Controlled Failure 
 

−𝐶!! ≤ 𝜎!! ≤ 𝑇!! (5) 
 
where axis 1 is in the fiber direction and 𝑇!! and 𝐶!! are the fiber direction 
tensile and compressive strengths. The matrix controlled failure criterion is 
given by 
 
Matrix Controlled Failure 
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where 
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(6b) 

 
In principal stress space 𝜎!, 𝜎! of the 2-3 plane the failure criteria (6a) and 
(6b) combine to give the especially simple single form for the matrix 
controlled failure as 
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In (6a), (6b), and (6c) 𝑇!! and 𝐶!! are the transverse tensile and compressive 
strengths and 𝑆!" is the axial shear strength. 
 

As proven in Ref. [5] the transverse shear strength 𝑆!"  is not an 
independent strength property but is determined by 𝑇!! and 𝐶!!. This is in 
complete consistency with the derivation of the isotropic materials failure 
criterion by FAIT, giving the isotropic result for the shear strength as (4). 
 
The range of the 𝑇!! and 𝐶!! strength properties in (6a)-(6c) is given by 
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Using (7) in (6b) then requires 
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or 
 

0.5 ≤
𝑆!"
𝑇!!𝐶!!

≤ 0.577 (9) 

 
It would be virtually impossible to always determine 𝑆!" experimentally to 
the accuracy required by (9). 𝑆!"  is a prediction from the theory and 
extremely difficult to determine experimentally as an independent entity. 
 

The most common value for the strength ratio !!!
!!!

 for carbon fiber 

polymeric matrix composites is !!!
!!!

= !
!
 , giving from (6b) 
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The two limits in (8) and the common value of 𝑆!"!  in (10) give the sequence 
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showing the regularity of behavior. 
 

The narrow window on 𝑆!" would be unappealing and irrelevant from 
a many parameters approach point of view. But from a physical point of 
view it is advantageous. The theory itself is telling us the permissible and the 
impermissible ranges for properties and behaviors. It is a highly significant 
advantage of the polynomial invariants theory. 
 

The fiber composites failure criteria in (5) and (6) are very easy to 
use. The fiber controlled criterion (5) is identical with the common, intuitive 
form. For some this may seem too simple to be realistic, but that would be 
incorrect reasoning. It is the rigorous result that comes directly from the 
polynomial invariants theory method in the case of highly anisotropic fiber 
composites. The two failure criteria are the most rigorous forms in existence. 
They follow from a rational derivation rather than merely being postulated, 
as are most failure criteria. 
 

The failure criteria (5) and (6) are also the simplest ones in existence 
since they only require 5 strength properties to calibrate them. Most failure 
criteria require a large number of parameters for calibration. This fiber 
composites failure theory is calibrated by only 5 strength properties, the 
same as the number of independent elastic properties for transverse isotropy. 
This is in complete harmony with the corresponding behavior of isotropic 
materials failure found by FAIT and given in the preceding section. 
 

It is physically helpful to examine the case where a transverse 
pressure 𝑃 is applied and increased until failure occurs. This then is a matrix 
controlled failure and it follows directly from (6a) and (6b) or equivalently 
(6c).  Let 
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The solution for the transverse pressure at failure is found to be 
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At the common value of !!!
!!!

 for carbon fiber polymeric matrix composites 
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The result (12) and the particular case (13) are revealing.  Pressure 𝑃 

at failure must be large compared with 𝐶!!  but likely not an order of 
magnitude larger. The result here that 𝑃 ≅ 3𝐶!! is perfectly reasonable. This 
would be an excellent test for any composites failure theory. Can it 
reasonably predict this transverse pressure failure without any “fudge 
factors” (sliding parameters)? 
 

The transverse pressure failure problem and solution just given can be 
enlarged to include the axial shear stress, 𝜎!" . This new problem is to 
determine the axial shear stress at failure under transverse pressure 𝑃. The 
solution from, (6c) is given by 
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As a typical example, again take !!!
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 as 
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For the reasonable pressure level of  
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then 
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𝜎!"
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= 1.620 (17) 

 
Thus it is seen that at a transverse pressure of 𝑃 = !!!

!
 the axial shear 

strength is increased by 62%. It is well know that superimposed pressure has 
a profound effect upon the strength in most stress states and this failure 
theory verifies and quantifies that general effect for fiber composites 
 

The axial shear stress squared at failure in (14) increases with 
increasing transverse pressure, reaching a maximum at the pressure 
 

𝑃
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and thereafter decreasing until reaching failure under the transverse pressure 
by itself. 
 
 There isn’t much doubt that a failure model with an abundance of 
parameters can have some success in fitting data sets of uncertain validity. 
But a blind adherence to that approach is not likely to endure. The only 
possibility for permanence is the physically based failure theory built up 
from steps of logic in its formulation and with no unspecified parameters. It 
will be the one most likely to model most physical features of realistic 
behavior, such as those shown here. 
 
 
First Ply Failure in a Quasi-Isotropic Laminate 
 

First ply failure will be determined for a quasi-isotropic laminate. The 
failure criteria (5) and (6) will be used to determine whether the initial 
failure is due to matrix controlled failure or due to fiber controlled failure 
and in which lamina the first failure actually occurs for a given stress state. 
This is the age old question but the answer is uniquely different for each 
different failure criterion under consideration and evaluation. With regard to 
the matrix controlled criterion (6) the failure could be due to either explicit 
matrix failure or interface failure. Both cases are covered by the failure 
criterion (6). 
 



The quasi-isotropic laminate form has the 4 plies directions as shown 
and designated in Fig. 1. 

 

 
Fig. 1    Laminate conventions 

 
 
At the lamina level the 1,2,3 axes are used with 1 in the fiber direction. 
 

The lamina level criteria from (5) and (6) take the forms 
 
Fiber Controlled Failure 
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Matrix Controlled Failure 
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The lamina level failures involve the stresses as given by 
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+45˚ Lamina 
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-45˚ Lamina 
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The stress notations and conventions are the usual ones. 
 

For the quasi-isotropic laminate, the modulus E and Poisson’s ratio 𝜈 
are given by 
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and 
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The lamina level elastic and failure properties for a realistic example 

are the typical values for a carbon/epoxy composite as 
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and 
 

𝑇!! = 2000 MPa 
 

𝐶!! = 1500 MPa 
 

𝑇!! = 50 MPa 
 

𝐶!! = 150 MPa 
 

𝑆!" = 80 MPa 

 
 
 
 
(28) 

 
The elastic property 𝜈!" is not needed in the example.  
 

In the laminate stress space of 𝜎! and 𝜎! the first ply failure due only 
to the fiber controlled failure modes are shown in Fig. 2     
 



 
Fig. 2    Fiber controlled first ply failure 

 
The matrix controlled failure modes by themselves are as shown in 

Fig. 3 
 

 
Fig. 3    Matrix controlled first ply failure 



The most limiting combination of the fiber controlled and the matrix 
controlled failure modes for the laminate are as shown in Fig. 4 
 

 
 

Fig. 4   First ply failures for the quasi-isotropic laminate 
 

The Fig. 4 envelope is the complete first ply failure envelope for the 
entire laminate. The majority of the failure restrictions are due to the matrix 
failure but the region in the 3rd quadrant is limited by the fiber compressive 
failure mode. 
 

This particular case shows the ease with which the problem of 1st ply 
failure can be executed for fiber composite laminates.  First ply failure is 
often the most limiting condition for design considerations. The important 
thing to remember is that the results are no better than the lamina level, 
unidirectional fiber composites failure theory from which they are generated. 
Such problems can become quite complex for the more general three-
dimensional problems often involved with composites but they still are 
directly amenable to solution. 
 

Also the general anisotropic problems at the laminate level become 
more involved than that given here for the quasi-isotropic case. Nevertheless 
the quasi-isotropic case is the most important problem of all. It must be 



solved first before the more challenging problems can be approached. Until 
there is agreement on the proper failure criteria for the unidirectional 
composites case and its transfer to the laminate level (first for the quasi-
isotropic laminate) the state of high confusion with composites failure will 
persist and continue. 
 
 
Conclusions 
 

A rationally derived and evaluated failure criterion for unidirectional 
fiber composites has been given. It should be compared with the norms in 
the field such as the top rated theories in the World Wide Failure Exercise 
[1]. These theories of failure as given by Pinho [6], Carrere [7], Puck [8] and 
Cuntze [9] involve multitudes of adjustable parameers.  If the parameters 
approach were taken for elasticity behavior rather than its classical 
theoretical foundation, the result would certainly be completely worthless. 
There is no reason to believe it would be any more successful for failure. 
The present rigorous failure theory presents a stark alternative to the 
parameters approach and it offers an opportunity for fiber composites to 
move ahead and provide a more substantial basis for general improvement 
and optimization. 
 

There will be a following paper related to this one that will take up the 
much more difficult problem of total failure of the laminate as opposed to 
that of first ply failure.  The total failure predictions from this failure theory 
will then be compared with well established experimental data. The two 
problems, first ply failure and total failure, will be compared and assessed, 
and integrated. Further new insights and conclusions will be given on the 
general problem of the failure of fiber composite materials.  In particular the 
first ply fiber failure concept will be completely discredited but the first ply 
matrix controlled failure (damage) as given here will be found to be well 
based and useful.   
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