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Introduction 
 
It has been 50 years or more since the first serious efforts were initiated to 
develop failure criteria for fiber composite materials. There is no need to 
give a historical summary, the litany is well known and well understood. It is 
sufficient to say that the huge and enervating effort has cascaded across 
many technical generations but still there is no tangible, usable, reliable and 
verified failure criterion for fiber composite materials. 
 
By far the most prominent recent effort on composites failure was the World 
Wide Failure Exercise (WWFE), Hinton and Kaddour [1]. Although it 
received considerable criticism, for example Christensen [2], it did serve a 
beneficial purpose. It helped to define the scope and boundaries of the 
problem and it certainly revealed the formidable difficulties associated with 
the failure problem.  
 
The degree of difficulty is evidenced by an apparent embargo on general 
failure criteria papers by one of the composites journals. This is 
understandable in recognition of the dismal record of success for the field. 
On the other hand, it rather constitutes an admission of defeat. In effect it 
says that the problem is too difficult to solve or for reasons not at all 
understood it is impossible to be solved. Either way it is an enforced block to 
understanding the ultimate condition of load bearing behavior for 
composites, what we ordinarily simply call failure. 
 
Is there really no expectation or even possibility for success in this quest? Is 
it a quixotic quest? Until very recently one would have been forced to say 
that it is extremely unlikely that there ever will be a reliable and realistic 
failure criterion for fiber composite materials. However, exactly the same 
thing could have been said about isotropic materials. After literally centuries 
of dedicated effort, there still was no general, physically based failure 
criterion for isotropy! That totally negative status for isotropy very recently 
was suddenly and drastically reversed. There now is a meaningful failure 
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criterion for all isotropic materials and most importantly, it offers high 
promise for anisotropic, fiber composites. 
 
The recent book by Christensen [3] lays out the comprehensive and 
validated theory for the failure of isotropic materials. After publication of 
the book six supporting papers were written and published. See Ref. [4] for 
these six references, for the history of the field, and for a general perspective 
on the subject. The present paper develops the corresponding and companion 
failure theory/failure criteria for fiber composites. This work is mainly 
aimed toward treating the failure of carbon fiber/polymeric matrix 
composites in the standard form of laminates. 
 
When dealing with the failure of fiber reinforced materials one usually starts 
with the case of aligned fiber composites. That case was most fundamentally 
treated by Christensen [5]. When considering the failure of general laminates 
there are two limiting cases that contain and limit all other laminate 
configurations. These are the unidirectional form and the quasi-isotropic 
form. As already mentioned, the unidirectional case was completely treated 
in [5]. The other limiting case, the quasi-isotropic case, will be thoroughly 
treated here for failure. 
 
In addition to being one of the two limiting cases of all possible laminate 
configurations, the quasi-isotropic form is the single most important 
laminate configuration because it has no weak directions of fiber orientation. 
It is the “pure” composite material form. It provides the most meaningful 
measures with which to compare and assess the properties of carbon fiber 
composites versus those of standard isotropic materials such as aluminum, 
magnesium, steel, titanium, etc. 
 
The configuration and consequent properties of quasi-isotropy are usually 
rationalized through stiffness considerations rather than through strength. 
Some investigators have argued that the strength for a quasi-isotropic 
stiffness arrangement is actually anisotropic in strength in the plane of the 
laminate. This has been the source of considerable controversy. It is here 
taken that the strength property of the laminate is also quasi-isotropic when 
the stiffness character is rationalized to be quasi-isotropic. This reasoning 
relates and appeals to the strength as being a laminate level property rather 
than as solely a lamina level property. 
 



Even though the strength for the laminate may be taken to be quasi-isotropic 
there still is a strong motivation to somehow relate that back to the lamina 
level strength properties. This may seem to be contradictory coming just 
after arguing that the strength is a laminate property, but it will be shown to 
be possible when viewing the strength problem across the various involved 
length scales. 
 
The overall problem of strength is immensely involved and complex. It will 
be unfolded and examined, and then synthesized here through the 
progression of many sequential steps, ultimately arriving at the desired end 
point, a rational method for treating the failure of fiber composite laminates.  
The entire development will follow the strict guidelines of theoretical 
mechanics analysis.  The organization will be composed of the following 
sequence of focus areas: 
 

Unidirectional Lamina Failure 
First Ply Damage, Total Failure of Laminates 
Quasi-Isotropic Conditions for Elasticity and Failure 
Failure of Quasi-Isotropic Laminates 
Experimental Evaluation 
Failure of Orthotropic Laminates 

  Conclusions 
  
The first significant step will be to recall and summarize the strength 
properties of the unidirectional lamina configuration, the ideal but usually 
not directly usable fiber composite materials form.  
 
 
Unidirectional Lamina Failure 
 
The failure criteria of interest are those for highly anisotropic, unidirectional 
fiber composites. The restriction to the condition of high anisotropy applies 
to both stiffness and strength. This condition is appropriate for carbon fiber 
polymeric matrix composites. The explicit polynomial invariants method for 
the highly anisotropic conditions with transversely isotropic symmetry 
requires decomposition of the failure criterion into two parts, as derived in 
Refs. [3] and [5]. These are the fiber controlled criterion and the matrix 
controlled criterion.  

 



The derivation of the failure criteria in [3] and [5] is fully three-dimensional. 
The matrix controlled part of it required an extremely careful and intricate 
derivation. The main part of the derivation was given in the paper [5] and it 
was crucially supported by the associated micromechanics analysis given in 
the book [3]. 
 
Fiber Controlled Failure 
 

−𝐶!! ≤ 𝜎!! ≤ 𝑇!! (1) 
 
where axis 1 is in the fiber direction and 𝑇!! and 𝐶!! are the fiber direction 
tensile and compressive strengths. The matrix controlled failure criterion is 
given by 
 
Matrix Controlled Failure 
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𝑇!!
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𝐶!!
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and where the transverse shear strength is specified by 
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1 + 𝑇!!

𝐶!!
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𝑇!!𝐶!! 

 
(3) 

 
In principal stress space 𝜎!, 𝜎! of the 2-3 plane the failure criteria (2) and (3) 
combine to give the especially simple single form for the matrix controlled 
failure criterion as 
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(4) 



 
In (2), (3), and (4) 𝑇!! and 𝐶!! are the transverse tensile and compressive 
strengths, 𝑆!" is the axial shear strength, and 𝑆!" is the transverse shear 
strength. 
 
As proven in Ref. [5] the transverse shear strength 𝑆!" is not an independent 
strength property but is determined by 𝑇!! and 𝐶!!. This is in complete 
consistency with the derivation of the isotropic materials failure, Ref. [3]. 

 
Thus this aligned fiber composites theory passes the first test of consistency. 
When isotropic materials disallow independent shear strength, then the 
transverse shear strength for transversely isotropic materials very likely must 
also not be independent but be determined by the other failure properties. 
That behavior occurs with (2)-(4).  

 
The range of the 𝑇!! and 𝐶!! strength properties in (2)-(4) is given by 
 

0 ≤
𝑇!!
𝐶!!

≤ 1 (5) 

 
Using (5) in (3) then requires 
 

1
4
≤

𝑆!"!

𝑇!!𝐶!!
≤
1
3

 
(6) 

or 
 

0.5 ≤
𝑆!"
𝑇!!𝐶!!

≤ 0.577 (7) 

 
The values of 𝑇!!/𝐶!! are usually about 1/4 to 1/3. The corresponding 
values for 𝑆!" are 
 

𝐴𝑡
𝑇!!
𝐶!!

=
1
4

            𝑆!" = 0.542 𝑇!!𝐶!!  
 
(8)  

𝐴𝑡
𝑇!!
𝐶!!

=
1
3

            𝑆!" = 0.535 𝑇!!𝐶!! 

 



It would be virtually impossible to routinely determine 𝑆!" experimentally to 
the accuracy required by (7) and (8). 𝑆!" is a prediction from the theory and 
extremely difficult to determine experimentally as an independent entity. 
 
This is the first and only derivation of failure criteria for unidirectional 
lamina that involves an independent prediction of the transverse shear 
strength, 𝑆!", in (3). Commonly reported values for 𝑆!" fall on either side of 
(3), both larger and smaller. Unfortunately commonly reported values for 
𝑆!" are notoriously unreliable. It will be highly advantageous to evaluate this 
theory of failure by comparing the prediction (3) for 𝑆!" against some 
certified and extremely reliable test data. It is not clear that such data are 
presently available. This remains a major priority for the future. 
Nevertheless, it can be said with certainty that the theoretical result (3) is 
consistent with the broad range of widely scattered test data available for 
𝑆!". 

 
The unidirectional fiber composites failure criteria in (1) and (2) or (4) are 
very easy to use. The fiber controlled criterion (1) is identical with the 
common, intuitive form. For some this may seem too simple to be realistic, 
but that would be incorrect reasoning. It is the rigorous result that comes 
directly from the polynomial invariants theory method in the case of highly 
anisotropic fiber composites. The two failure criteria are the most rigorous 
forms available. They follow from a rational derivation rather than merely 
being postulated, as are most failure criteria for unidirectional lamina. 
 
The failure criteria (1) and (4) are also the simplest ones since they only 
require 5 strength properties to calibrate them. Most failure criteria require a 
large number of parameters to be specified. This fiber composites failure 
theory is calibrated by only 5 strength properties, the same as the number of 
independent elastic properties for transverse isotropy. This is in complete 
harmony with the corresponding behavior of isotropic materials where only 
two properties suffice for each function, stiffness or strength.  
 
 
First Ply Damage, Total Failure of Laminates 
 
Having succeeded in developing the failure criteria for the unidirectional 
lamina, it is the logical next step to examine all the lamina in a laminate to 
see which one is the first to fail under a prescribed loading of the laminate. 
This is the widely applied first ply failure approach. With the lamina failure 



criteria decomposed into fiber controlled modes of failure versus matrix 
controlled modes of failure, then these same two conditions exist for the 
laminate as independent entities. 
 
The matrix controlled first ply failure is easily found and the independent 
fiber controlled first ply failure also is easily found. In the laminate context 
the matrix controlled first ply failure is not actually failure of the laminate, it 
is only failure of the single lamina. Accordingly and henceforth first ply 
matrix controlled failure will always be referred to as first ply damage. This 
much is straightforward and internally consistent. 
 
The situation with fiber controlled first ply failure is vastly more complex 
than the matrix controlled case. Typically laminates are examined in the 
biaxial stress space of 𝜎!! versus 𝜎!!, or 𝜎! versus 𝜎!. In this case the fiber 
controlled first ply failure for a quasi-isotropic laminate has the diamond 
shaped failure envelope as shown in Ref. [3]. Two of the four vertices form 
extremely acute angles. If one tries to consider this first ply failure as the 
failure envelope for the laminate, it is completely and notoriously 
unsuccessful. This much has been known and understood for a long time. 
Thus fiber controlled first ply failure is not a useful concept in general and it 
will be abandoned here for any serious use with failure characterization. 
 
The continuing term first ply damage has real meaning in the laminate 
context when the source is the matrix failure at the lamina level. The general 
concept of damage is widely used and applied in the laminate context. It has 
evolved that damage in one form or another is the organized but empirical 
treatment of states approaching failure of the laminate. It follows that 
damage is a useful concept and a real condition in composites but it is not 
helpful in understanding the actual, explicit failure of the laminate. Other 
means are required to arrive at an explicit criterion for the total failure of the 
laminate. 
 
The pursuit of a general approach for the failure of laminates has been the 
“holy grail” for 50 years or more. There have been so many false starts and 
ridiculous claims that the pursuit is beginning to seem beyond extremely 
difficult, perhaps it is only vanishingly possible. But with the success in 
determining the failure criteria for the unidirectional lamina, there is 
renewed hope for success in the laminate case. The most important new 
understanding at this point is the realization that fiber controlled first ply 
failure is not a successful approach for treating laminate failure. That is, it is 



not successful for treating the total failure of the laminate. After that 
realization is fully assimilated, a new outlook of promise emerges. This is 
embodied in the following failure theorem that refers to laminates under 
plane stress conditions with no out of plane loadings or delaminations. 
 
Laminate Failure Theorem 
 
There exist failure modes in the laminate that do not exist at the lamina 
level. Conversely there exist failure modes at the lamina level that do not 
exist at the laminate level. 
 
The proof of this theorem will be by physically based, tangible examples. It 
would not be possible to prove this theorem by purely mathematical means. 
 
In summary of the conclusions arrived at thus far: 
 

(i) First ply damage in the laminate is caused by and on the level of 
lamina induced matrix controlled failure behavior. 
 

(ii) Failure of the laminate is initiated at and induced at the laminate 
level even though there may be precursor events at the lamina 
level. 

 
 
Quasi-Isotropic Conditions for Elasticity and Failure 
 
As outlined in the Introduction section, the quasi-isotropic configuration for 
the arrangement of all lamina is by far the most important of all laminate 
configurations. This is obtained by arranging the lamina orientations at equal 
angles with a minimum of three separate orientations. The common form is 
the 0, 90, ±45 degree set of orientations. In this section all the information 
needed to treat the failure of quasi-isotropic laminates will be assembled. 
The formal treatment of failure will be given in the following section. All 
forms are for plane stress conditions, as is normal. 
 
The first characterization needed for the quasi-isotropic laminate is the in-
plane elastic modulus 𝐸 and the Poisson’s ratio 𝜐. These are given by 
 

𝐸 = 𝑄!! + 𝑄!! + 2𝑄!"
𝑄!! + 𝑄!! − 2𝑄!" + 4𝑄!!

3 𝑄!! + 𝑄!! + 2𝑄!" + 4𝑄!!
 

(9) 



 
and 
 

𝜈 =
𝑄!! + 𝑄!! + 6𝑄!" − 4𝑄!!

3 𝑄!! + 𝑄!! + 2𝑄!" + 4𝑄!!
 

(10) 

 
where at the lamina level 
 

𝑄!! =
𝐸!!

1 − 𝜈!"𝜈!"
 

 

𝑄!! =
𝐸!!

1 − 𝜈!"𝜈!"
 

 

𝑄!" =
𝜈!"𝐸!!

1 − 𝜈!"𝜈!"
 

 
𝑄!! = 𝜇!" 

 
 
 
 
 
(11) 

 
and 
 

𝜈!" =
𝐸!!
𝐸!!

𝜈!"  

 
and where axis 1 is in the fiber direction. It is believed that this is the first 
time that these simplest forms for quasi-isotropic 𝐸 and 𝜐 expressed in terms 
of lamina properties have been derived and displayed. 
 
Next the basic form for the failure criterion for the quasi-isotropic laminate 
must be identified or established. As already explained the first ply fiber 
failure approach is completely discredited. In view of the similarity of the 
quasi-isotropic state for the laminate and that for fully isotropic materials, 
the failure form for the latter will be taken to give the trial or provisional 
form for the former. In particular, the polynomial invariants method for 
isotropy will be stated here in appropriate form for the quasi-isotropy case of 
the laminate. This procedure has been fully developed in Ref. [3] and from 
Eq. (12.5) of that source the provisional failure criterion for the quasi-
isotropic laminate is given by 
 



1
𝑇
−
1
𝐶

𝜎!! + 𝜎!! +
1
𝑇𝐶

𝜎!! + 𝜎!! ! +
1
𝑆!

𝜎!"! − 𝜎!!𝜎!! ≤ 1 (12) 

 
where 𝑇 and 𝐶 are the uniaxial tensile and compressive strengths and 𝑆 is the 
in-plane shear strength. Index notation will also be used here with the 
laminate case as it was with the lamina case in the second section.  The 
difference will always be clear from the context. 
 
Finally for this assembly of required forms, the conditions relating stresses 
at the lamina level and at the laminate level will be given. This will be of use 
in the failure theory development of the next section. The ply orientations 
for the quasi-isotropic laminate are as shown in Fig. 1. 
 

 
Fig. 1 Lamina orientations giving quasi-isotropy 

 
 
0˚ Lamina 
 

𝜎!! =
𝐸!!

𝐸 1 − 𝜈!"𝜈!"
1 − 𝜈𝜈!" 𝜎! + 𝜈!" − 𝜈 𝜎!  (13) 



 

𝜎!! =
𝐸!!

𝐸 1 − 𝜈!"𝜈!"
𝜈!" − 𝜈 𝜎! + 1 − 𝜈𝜈!" 𝜎!  

 
(14) 

 
𝜎!" = 0 

 
(15) 

 
 +45˚ Lamina 
 

𝜎!! =
1 − 𝜈 1 + 𝜈!" 𝐸!!
2 1 − 𝜈!"𝜈!" 𝐸

𝜎! + 𝜎!  
(16) 

 

𝜎!! =
1 − 𝜈 1 + 𝜈!" 𝐸!!
2 1 − 𝜈!"𝜈!" 𝐸

𝜎! + 𝜎!  

 
 
(17) 

 

𝜎!" =
1 + 𝜈 𝜇!"

𝐸
𝜎! − 𝜎!  

 
(18) 

 
Two similar sets of relations apply for the other two lamina orientations. To 
avoid confusion between lamina and laminate notations, 𝜎! and 𝜎! in (13) 
and (14) refer to the laminate level stresses for biaxial stress states. 
 
 
Failure of Quasi-Isotropic Laminates 
 
All of the discussions and results up to this point have been necessary 
preliminaries. Now is the time and place to develop the explicit failure 
criterion for the most important fiber composites laminate of all, the quasi-
isotropic form. 
 
Equation (12) of the previous section is the starting point. This failure 
condition is calibrated by the three failure stresses 𝑇, 𝐶, and 𝑆. A decisive 
step will now be taken and justified to express the shear strength 𝑆 in terms 
of the uniaxial strengths 𝑇 and 𝐶. 
 
In the case of three dimensionally isotropic materials failure, as developed 
by the polynomial invariants method in [3], the shear strength is given by 
 

𝑆! =
𝑇𝐶
3

 (19) 



 
This is the three dimensional result from three dimensional isotropy. But it 
also follows that it is valid in the two dimensional case of quasi-isotropy for 
laminates. This is because all three failure stresses �, 𝐶, and 𝑆 are defined 
and determined in the two dimensional sub-space of three space. That the 
form (19) applies to both 3-D isotropy and the 2-D quasi-isotropy of 
laminates is a critical step forward. 
 
Substituting (19) into (12) gives 
 

1
𝑇
−
1
𝐶

𝜎!! + 𝜎!! +
1
𝑇𝐶

𝜎!! + 𝜎!! ! +
3
𝑇𝐶

𝜎!"! − 𝜎!!𝜎!! ≤ 1 (20) 

 
Expressing (20) in the usual biaxial state of 𝜎!! and 𝜎!!, or equivalently in 
terms of principal stresses results in 
 

1
𝑇
−
1
𝐶

𝜎!! + 𝜎!! +
1
𝑇𝐶

𝜎!!! − 𝜎!!𝜎!! + 𝜎!!! ≤ 1 (21) 

 
This incredibly simple form is the complete failure criterion for the quasi-
isotropic laminate. Only the uniaxial strengths 𝑇 and 𝐶 are needed to 
calibrate it, these are the uniaxial strengths from laminate level testing. 
 
The failure criterion (21) is the final result when the strengths 𝑇 and 𝐶 are 
directly measured from tests on the quasi-isotropic laminate. However, it 
would be extremely advantageous if 𝑇 and 𝐶 could be related to the strength 
results obtained directly from the uniaxial lamina specimens of the same 
material. Usually these are called the tow strengths when referring to fiber 
direction strengths. In the notation of the unidirectional lamina, these would 
be the fiber controlled strengths 𝑇!! and 𝐶!!. Now we embark on a further 
program to relate the quasi-isotropic laminate strengths 𝑇 and 𝐶 to the tow 
strengths 𝑇!! and 𝐶!!. 
 
The first step is to relate laminate tensile strength 𝑇 to the tow strength 𝑇!!. 
The lamina to laminate stresses are given by relations (13)-(18). In the 
lamina to laminate stress relation (13) let 𝜎!! = 𝑇!! and 𝜎! = 𝑇, 𝜎! = 0 then 
giving 
 



𝑇 =
𝐸 1 − 𝜈!"𝜈!"
𝐸!! 1 − 𝜈𝜈!"

𝑇!! 
(22) 

 
With 𝐸 and 𝜈 from (9) and (10) and 𝜈!" from direct measurement on the 
lamina and 𝜈!" from (11), then (22) supplies the desired relation predicting 
the uniaxial tensile strength of the quasi-isotropic laminate in terms of the 
lamina properties and the tow tensile strength. An implicit condition in this 
derivation of (22) is that the fiber controlled failure in one of the four fiber 
directions implies failure of the quasi-isotropic laminate. This will require 
experimental verification, to be considered in Section 6. 
 
Now turn to the corresponding compressive strength problem. It will be 
found to be much more complicated than the tensile case. We could as a trial 
path follow exactly the same procedure in the compressive case as was just 
done in the tensile case but that would be found to not compare well with 
test data. This will be shown with a data example later. The reason for the 
difficulty is fairly clear. Compressive failure modes involve the formation of 
kink bands (fiber buckling) or fiber splitting or perhaps combinations 
thereof. These compressive failure modes in the laminate may be much 
different from those in the lamina testing because of the constraint imposed 
by the neighboring lamina on any one particular lamina and its failure. This 
problem does not occur with the tensile failure case. 
 
There is only one compressive case where the constraint imposed by the 
neighboring lamina do not influence the failure. This is the case of eqi-
biaxial compression. Then all the lamina are at incipient failure at the same 
loading and they do not provide any additional constraints against failure, 
they all fail simultaneously. Thus eqi-biaxial compressive failure will be 
used determine uniaxial failure 𝐶 in terms of lamina 𝐶!!. 
 
In the eqi-biaxial compression case as simulated by (13) take 
 

𝜎! = 𝜎! = 𝜎 (23) 
 
and take 
 

𝜎!! = −𝛼𝐶!! (24) 
 



where 𝛼 is an unknown nondimensional scale factor that must be determined 
independently. The procedure for doing that will be developed a littler later 
in the derivation. Scale factor 𝛼 will be carried along for now. 
 
Substitute (23) and (24) into (13) giving 
 

𝜎 = −
𝐸
𝐸!!

1 − 𝜈!"𝜈!"
1 − 𝜈 1 + 𝜈!"

𝛼𝐶!! 
(25) 

 
In the case of eqi-biaxial compression, the stress at failure in the laminate for 
𝜎!! = 𝜎!! = 𝜎 is given by (21) as 
 

𝜎 = 𝑇 − 𝐶 − 𝑇! − 𝑇𝐶 + 𝐶! (26) 
 
Eliminating 𝜎 between (25) and (26) and solving for 𝐶 gives the result 
 

𝐶 =
𝐸
𝐸!!

1 − 𝜈!"𝜈!"
1 − 𝜈 1 + 𝜈!"

𝛼𝐶!!
𝑇!!

+ 2 1 − 𝜈 1 + 𝜈!"
1 − 𝜈𝜈!"

2𝛼𝐶!!
𝑇!!

+ 1 − 𝜈 1 + 𝜈!"
1 − 𝜈𝜈!"

𝛼𝐶!! 

 
(27) 

 
Next these results will be specialized to the condition of extreme anisotropy 
at the lamina level which is appropriate to this complete treatment of carbon 
fiber/polymeric composites. 
 
Limiting Case Extreme Lamina Anisotropy 
 
With extreme anisotropy in both stiffness and strength for the unidirectional 
lamina, the 𝑄!! term in (9) and (10) is much larger than all the other 𝑄 terms 
giving 
 

𝐸 =
𝑄!!
3

 (28) 

 
and 
 

𝜈 =
1
3

 (29) 

 



Then from (11) it follows that 
 

𝜈!" = 0 (30) 
 
and 
 

𝑄!! = 𝐸!! (31) 
 
Combining (28) and (31) gives  
 

𝐸 =
𝐸!!
3

 (32) 

 
Eqs. (29) and (32) are the quasi-isotropic elastic properties in terms of the 
tow elastic property. Relations (29) and (30) and (32) comprise the 
intermediate results needed to proceed. 
 
Using (28)-(32) in (22) and (27) gives 
 

𝑇 =
𝑇!!
3

 (33) 

 
and 
 

𝐶 =
1 + 3𝛼𝐶!!4𝑇!!
1 + 3𝛼𝐶!!𝑇!!

𝛼𝐶!! 

 
(34) 

 
Combining (33) and (34) then yields the ratio of the strengths as 
 

𝐶
𝑇
= 3

1 + 3𝛼𝐶!!4𝑇!!
1 + 3𝛼𝐶!!𝑇!!

𝛼
𝐶!!
𝑇!!

 

 
(35) 

 
To proceed further the unknown scale factor 𝛼 must be evaluated. Perfect 
behavior occurs when the lamina strengths give 𝐶!! 𝑇!! = 1. This perfect 
behavior at the lamina scale must also require perfect behavior at the 



laminate scale, namely 𝐶 𝑇 = 1. Imposing these two conditions on (35) 
results in 
 

3𝛼
1 + 34𝛼
1 + 3𝛼

= 1 
 
(36) 

 
This has the solution for the scale factor as 
 

𝛼 =
2
3

 (37) 

 
 
Lamina to Laminate Strengths 
 
Using (37) in (34) gives the final result, along with (33), as 
 

Laminate
Failure

Properties

𝑇 =
𝑇!!
3

𝐶 =
2 + 𝐶!!𝑇!!
1 + 2𝐶!!𝑇!!

𝐶!!
3

Tow
Failure
Input

 

 
 
(38) 

 
Taking the ratio of these two failure properties has 
 

𝐶
𝑇
=

2 + 𝐶!!𝑇!!
1 + 2𝐶!!𝑇!!

𝐶!!
𝑇!!

 

 
(39) 

 
It follows that 
 

𝐶
𝑇
≥
𝐶!!
𝑇!!

 (40) 

 
Thus in the laminate the disparity or imbalance between 𝐶 and 𝑇 is less than 
that in the lamina. The laminate has a beneficial smoothing effect over that 
in the lamina. 



 
The two final relations exhibited in (38) are the major results allowing tow 
measured failure properties to predict the entire failure behavior for the 
quasi-isotropic laminate through (21). Many crucial but physically justified 
steps were involved in this completing deduction. Next these theoretical 
results will be compared with high quality experimental data. There are no 
adjustable parameters and only two measured strength properties are 
involved. 
 
 
Experimental Evaluation 
 
We consider a quasi-isotropic laminate composed of IM-7 or equivalent 
carbon fibers in a polymeric matrix. From Hexcell data sheets the tow 
strengths in tension and compression are about 
 

𝑇!! = 2700 MPa  
(41)  

𝐶!! = 1700 MPa 
 
The ratio of these is 
 

𝐶!!
𝑇!!

= 0.630 (42) 

 
From the relations in (38), the laminate uniaxial tensile and compressive 
strengths are predicted from the tow properties to be 
 

𝑇 = 900 MPa  
(43)  

𝐶 = 660 MPa 
 
with the ratio 
 

𝐶
𝑇
= 0.733 (44) 

 
Comparing the tow and composites laminate ratios in (42) and (44) it is seen 
that the laminate is considerably more balanced in its tensile and 
compressive strengths mismatch than is the tow level. 



 
The full spectrum of biaxial failure stresses is given by (21) when the 
calibrating properties (43) are substituted into it. The shear strength is then 
predicted to be 
 

𝑆 = 445 MPa  
 
and the eqi-biaxial tensile and compressive strengths are predicted as 
 

𝜎 = 1047 MPa 𝑎𝑛𝑑 − 567 MPa  
 
Before getting to the experimental data, it is helpful to compare the 
polynomial invariants theoretical predictions from (21) and (43) with the 
corresponding first ply fiber controlled failure that also comes from the tow 
strengths. The results are shown in Fig. 2. 
 

 
Fig. 2 Comparison between quasi-isotropic polynomial invariants failure 

theory, (21) and (43), and first ply fiber failure. 

 



From Fig. 2 it is verified that the uniaxial tensile strengths by the two 
methods coincide but the uniaxial compressive strengths do not agree for the 
two methods. As explained fully in the derivation this is because of the 
constraints on compressive failure that occur in the laminate but do not 
occur in the lamina (tow) testing. The ridiculous predictions of the eqi-
biaxial strengths (first and third quadrants) given by the first ply fiber failure 
criterion stand out in Fig. 2. 
 
By one measure of position it can be shown that the polynomial invariants 
failure criterion ellipse in Fig. 2 is centered within the extent of the first ply 
fiber controlled failure envelope, the diamond shaped form in Fig. 2. This is 
an unexpected evidence of consistency. 
 
Now the comparison between experimental failure data and the theory based 
predictions will be given. The results are shown in Fig 3.  The data are taken 
as symmetrical about the 45˚ line in Fig. 3, Welsh et al [6]. Also the data in 
the first quadrant are not shown because they are highly doubtful for the 
following reason. The biaxial specimen type was that of a cruciform shape. 
Unfortunately this type of specimen has highly fracture prone stress 
concentrations at the interior corners under tension-tension conditions. The 
failure modes were said to be reasonable for conditions involving 
compressive stresses but no corresponding reassurance was offered for the 
tensile-tensile failure modes. The full data sets are shown in Refs. [3] and 
[6]. 



 
Fig. 3 Quasi-isotropic failure data, Welsh et al [6], versus the theoretical 

predictions from (21) and (43). 

 
The theoretical versus data comparisons for eqi-biaxial compression and 
tension states are as follows: 
 
 Theory Data 

Eqi-Biaxial Compression -567 MPa -550 MPa 

Eqi-Biaxial Tension 1047 MPa 600 MPa 

 
The data values for the two stress states are completely inconsistent. They 
suggest a Mises criterion with 𝐶 𝑇 = 1 which would be exceedingly 
unlikely for the quasi-isotropic laminate made of lamina with 𝐶!! 𝑇!! =
0.63. It is the tensile data of the first quadrant data that are highly suspect. 
The uniaxial tensile data in Fig. 3 also understates the theoretical value for 
the same reason.  The search for reliable tensile test data in the first quadrant 
will continue. 



 
If the simple form 𝐶 = 𝐶!! 3 were used instead of the correct form in (38) 
the compressive stress at eqi-biaxial failure would be 𝜎 = −455 MPa versus 
the theoretical prediction of −567 and the data value as −550. 
 
It should also be mentioned that the theoretical predictions follow from the 
Hexcell data sheets for the tow properties of IM-7 type materials rather than 
the slightly different values given in [6]. 
 
Finally with respect to the theory vs. data comparison in Fig. 3, it is fairly 
good considering the typical scatter in the data. It is all the more relevant and 
useful considering that the theoretical prediction is completely calibrated by 
only the two tow level properties of the fiber composite material. 
 
Dr. Welsh and his colleagues performed a commendable service for the 
discipline in developing the biaxial data generating system where the entire 
development required many years of testing and refinement. That is why 
there are so few reliable testing results under biaxial conditions for fiber 
composite materials.  Further reliable failure data are sorely needed. 
 
 
Failure of Orthotropic Laminates 
 
With the success gained in the previous section on quasi-isotropic laminates, 
we extend the same polynomial invariants method to treat orthotropic 
laminates. From Christensen [3], Eq. (12.6) the polynomial invariants 
method for orthotropic symmetry yields the failure criterion as 
 

1
𝑇!!

−
1
𝐶!!

𝜎!! +
𝜎!!!

𝑇!!𝐶!!
+

1
𝑇!!

−
1
𝐶!!

𝜎!! +
𝜎!!!

𝑇!!𝐶!!
+ 𝜆!"𝜎!!𝜎!!

+
𝜎!"!

𝑆!"!
 ≤ 1 

 
 
(45) 

 
where the 𝑇’s and 𝐶’s have the obvious identifications with uniaxial failure 
stresses and 𝑆!" is the shear strength. Parameter 𝜆!" in (45) is a dimensional 
constant that requires further interpretation. 
 
Write the 5th term in (45) as 
 



𝜆!"𝜎!!𝜎!! = 𝛽
𝜎!!
𝑇!!𝐶!!

𝜎!!
𝑇!!𝐶!!

 
(46) 

 
where the conventional notations of the 2nd and 4th terms in (45) have been 
employed. Now parameter 𝛽 is of a nondimensional character. Determine 𝛽 
such that when the orthotropic form in (45) and (46) is reduced to quasi-
isotropy it then must give the herein derived form in (20). This requires 
 

𝛽 = −1 (47) 
 
Finally (46) and (47) incorporated back into (45) gives the final form 
 

1
𝑇!!

−
1
𝐶!!

𝜎!! +
1
𝑇!!

−
1
𝐶!!

𝜎!! +
𝜎!!
𝑇!!𝐶!!

−
𝜎!!
𝑇!!𝐶!!

!

+
𝜎!!
𝑇!!𝐶!!

𝜎!!
𝑇!!𝐶!!

+
𝜎!"!

𝑆!"!
≤ 1 

 
 
(48) 

 
For the general orthotropic layup of the fiber reinforced lamina, the failure 
form (48) is amazingly simple. The failure properties that calibrate the 
failure criterion (48) are 
 

𝑇!!,𝐶!!,𝑇!!,𝐶!!,& 𝑆!"  
 
All of these are directly found from standard one-dimensional tests of 
strength determination. These five strengths for calibration are of the same 
number as the number of elastic constants required to calibrate the elastic 
behavior. 
 
It would be unlikely that these five calibrating strength terms could be 
related to the tow properties in the way that was possible for the quasi-
isotropic laminate, at least not with the same degree of rigor as was enforced 
there. This is not really a disadvantage. Determining the five strength 
properties by direct testing is completely approachable and reasonable. 
 
A restriction must go along with the failure criterion (48). If one tries to 
reduce (48) to the case of a unidirectional form (lamina) it can be made to 
successfully recover the fiber controlled failure criterion (1) but it does not 
recover the matrix controlled failure criterion (2). To recover both, the 



approach must revert initially to the two decomposed forms (1) and (2). 
Relation (48) does not give both criteria. 
 
The resulting and accompanying restriction appended to (48) must examine 
the three terms 
 

𝑇!!𝐶!!,   𝑇!!𝐶!!,   &  3𝑆!" (49) 
 
None of the three terms in (49) can be an order of magnitude or more larger 
than either of the other two terms. Otherwise the failure criterion must be 
decomposed into fiber controlled versus matrix controlled modes of failure. 
This is not a serious restriction for the types of orthotropic layups normally 
and ordinarily employed. 
 
An example will illustrate the use of the failure criterion (48). Take the 
calibrating failure properties as 
 
 

𝑇!! = 1500 MPa  
 
 
 
(50) 

 
𝐶!! = 1000 MPa 

 
𝑇!! = 500 MPa 

 
𝐶!! = 300 MPa 

 
𝑆!" = 200 MPa 

 
These properties roughly correspond to taking 55% of the lamina in the 𝜎!! 
direction and 15% each in the other 3 directions of the 4 direction layup 
pattern in Fig. 1. 
 
Taking 𝜎!" = 0 then (48) has the failure envelope as shown in Fig. 4.  The 
predominate fiber reinforcement being in the 𝜎!! direction has a strongly 
distorting effect on the size and shape of the failure envelope compared with 
that in Fig. 3 for quasi-isotropy. 
 



 
Fig. 4 Orthotropic failure envelope (48) for properties (50) with 𝜎!" = 0. 

 
 
The Fig. 4 failure envelope applies only when 𝜎!" = 0. When 𝜎!" ≠ 0 then 
the failure envelopes for 𝜎!! and 𝜎!! are quite different. Also 𝜎!! vs. 𝜎!! vs 
𝜎!" can be visualized as a three dimensional failure envelope. 
 
Since the quasi-isotropic form is a special case of orthotropic symmetry, its 
evaluation with experimental data in Section 6 also applies here for general 
orthotropy. 
 
 
 Conclusions 

 
The two most important and also limiting cases of fiber composite laminates 
are the unidirectional form and the quasi-isotropic form. The failure criteria 
for the former are reviewed here and for the latter they are derived here in 
full detail. 
 



It is a remarkable concurrence of results from this theory for the fiber 
dominated quasi-isotropic laminate that the elastic modulus E of the 
laminate is found to be one third that of the elastic modulus of the tow 
material (32), and the uniaxial tensile strength T of the laminate also is one 
third that of the tensile strength of the tow material (33).  These 
exceptionally simple results are of basic and broad usefulness and enable a 
complete failure characterization. 
 
The extremely close and tight relationship between quasi-isotropic laminates 
and three dimensional isotropic materials shows that all the testing 
validations for the 3-D isotropic materials case in [3] are strongly reinforcing 
to the validity of this quasi-isotropic fiber composites failure formalism, in 
addition to the data explicitly shown here.  And that in turn reinforces the 
orthotropic failure formalism arrived at by the same polynomial invariants 
methodology.  
 
Equally important as the quasi-isotropic results is the resulting failure 
criterion (48) for the general orthotropic case, of which quasi-isotropy is a 
special case.  For the general orthotropic laminate case, the failure criterion 
is calibrated by five laminate failure properties, 𝑇!!, 𝐶!!, 𝑇!!, 𝐶!!, and 𝑆!". 
These are determined directly from laminate testing.  
 
The 𝑇!! and 𝐶!! failure properties for the orthotropic laminate must not be 
confused with the two tow (unidirectional) failure properties 𝑇!! and 𝐶!! for 
the quasi-isotropic case.  The orthotropic case covers an enormous range of 
laminates for all the common and conventional layup patterns. Even just its 
existence is reassuring to the viability of treating failure in a rational manner.   
 
Over the years the search for failure criteria for fiber composites has largely 
degenerated into curve fitting operations. Examples are from the World 
Wide Failure Exercise, Refs. [7]-[10], they illustrate that particular approach 
and its complications and consequences.  All the present results could not 
have been derived without using the full arsenal of methods and techniques 
from the mechanics of materials behavior.  Mechanics was the key, nothing 
was postulated and only failure properties measured directly from the fiber 
composite material were utilized. 
 
Having herein derived and developed and validated the tensorially correct 
and complete forms for the failure criteria, the basic framework for the 
failure theory and the associated failure criteria is considered to be finished 



and completed. It now is a straightforward matter to build into this basic 
framework other ancillary aspects of failure such as residual stresses formed 
in processing, edge effects, delamination, and any of the other defects and 
complications commonly encountered. 
 
It can now safely be said that there most certainly has been progress on 
failure theory over the most recent years. A new plateau has been reached 
for understanding composite materials failure behavior after 50+ years of 
travail. There now is a very promising future for the broad and reliable usage 
of failure criteria for carbon fiber/polymeric matrix composite materials. 
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