
XVI. FAILURE MECHANICS: THE CENTRAL AND 
DECISIVE ROLE OF GRAPHENE IN DEFINING THE 
ELASTIC AND FAILURE PROPERTIES 

 
 
Introduction and Continuation 
 

This work is the continuation of “Failure Mechanics, Part I”, [1].  
Note to reader: Part I refers to the publication Ref. [1], also given as Section 
XV in this website.  Part I concerned the renormalization of elasticity theory 
giving it a much simpler and more meaningful (but still rigorous) form that 
possesses an intimate connection and coordination with failure theory for 
homogeneous and isotropic materials.  The salient results from that work 
will provide the starting platform for this work. 
 

The program here will be directed toward finalizing the basis for 
failure theory.  There are two major areas of theoretical uncertainty that must 
be confronted in order to accomplish this.  The first question to be resolved 
concerns the condition required for the relationship between elasticity theory 
and failure theory to apply.  From Part I it is necessary that the Poisson’s 
ratio be non-negative.  Although in practice this is a common occurrence, it 
immediately raises the following question: 

 
(i)  Is there a physical proof that Poisson’s ratio must be non-
negative for homogenous and isotropic materials? 

 
If this cannot be proven then the relationship between elasticity theory and 
failure theory developed in Part I would become a type of correlation.  No 
doubt a very effective correlation but still far less than the completing 
keystone on a joint theory of elasticity and failure. Total consistency and 
compatibility are required for an acceptable failure theory.   

 
This uncertainty about the true nature of Poisson’s ratio is one of the 

oldest completely unsolved issues in all of mechanics.  It is not enough to 
simply declare that Poisson’s ratio should always be positive or alternatively 
to insist that it could be positive or negative.  Either claim must be proven 
for homogeneous and isotropic materials.  There are spirited advocates and 
constituencies for both points of view but no technical proofs either way, 
that part has always been missing.  Further confusion is added by the fact 
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that some anisotropic materials have easily measurable negative Poisson’s 
ratios.   

 
Graphene will be found to have an essential role in resolving the 

isotropic Poisson’s ratio problem with a proof.  All of these matters will be 
explored and treated in considerable detail in the next three sections.  The 
next section recalls the final results from Part I.  Then the following third 
section introduces the fascinating technical area of graphene and ultimately 
produces the proof that for two dimensional isotropic elasticity theory the 
embedded two dimensional Poisson’s ratio must be non-negative.  
Following and building on the two dimensional result, the fourth section 
provides the corresponding proof that three dimensional theory Poisson’s 
ratio must be non-negative for homogeneous and isotropic materials. 

 
The 2-D and 3-D proofs are not simple.  In both cases the critical 

reasoning is at the nano-scale. If the problem were easy and direct it would 
have been archived many ages ago and always promulgated after that.  The 
Poisson’s ratio problem is long overdue for resolution.  Failure mechanics 
requires it for it’s own completion. 
 

The second problem to be faced is the following almost equally 
fundamental question:   
 

(ii)  Why is not failure theory best and most generally formulated 
in terms of the limiting failure stresses in states of shear and 
dilatation? 

 
This question is directly motivated by the fact that the kinematics of general 
states of deformation are prescribed in terms of combinations of states of 
distortion, states of dilatation and states of rotation.  From this it would seem 
to follow that the associated isotropic failure theory should correspondingly 
be formulated in terms of failure stresses in shear and in dilatation.   
 

The present failure theory is formulated in terms of the failure stresses 
in uniaxial tension and compression.  Uniaxial tensile and compressive 
failure might appear to be too simplistic, too superficial to anchor a 
comprehensive, multidimensional theory of materials failure.  Thus there 
could appear to be a basic insufficiency or inconsistency here that must be 
answered and will be answered in penultimate section. 



 The resolution to these two fundamental questions related to failure 
theory will firmly and conclusively place the present failure theory in its 
proper perspective of generality and completeness.  A wide ranging 
summary section including important, final assessments will be given at the 
conclusion of the paper. 
   
 
Three Dimensional Theory Results 
 
 The main results from Part I [1] will now be recalled for later use 
here.  The failure theory from [1] and [2] has the polynomial invariants 
criterion as 
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where T and C are the uniaxial tensile and compressive strengths with 
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where ! 1,! 2 ,  and σ 3  are the principal stresses.  Refs. [1] and [2] give  
further details upon the derivation, interpretation and implementation of this 
two property failure theory. 
 
 The renormalized elasticity theory derived in [1] defines the 
renormalized Poisson’s ratio and renormalized elastic modulus as 
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and 
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 The usual positive definite energy requirement provides the standard 
limits on ν  as 
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The possibility of negative values for Poisson’s ratio has always been 
troublesome.  Negative values have never been found for homogeneous and 
isotropic materials, but still their existence has always necessarily been 



granted and carried forward.  Negative values for !  also imply negative 
values for the renormalized ! *  from (6). 
 
 In the derivation from [1] it was assumed that Poisson’s ratio is 
always non-negative, as 
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Then the renormalized Poisson’s ratio from (6) has the corresponding range 
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 Using (6) and (7) then the energy and the strain-stress constitutive 
relations for linear elasticity are given by the concise and compact forms 
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where ! M  is the mean normal stress. 
 
 It also follows that the two renormalized properties are expressible in 
terms of the shear modulus µ  and the bulk modulus k as 
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These two forms should be compared with the more complex classical forms 
of 
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 From (13) it is seen that E*  directly follows from the shear modulus, 
but ν *  differentiates the separate sources of distortional and dilatational 
resistances, through µ  and k.  This permits a very special interpretation for 
the renormalized Poisson’s ratio, as given in [1]. 
 
With the range on ν *  given by (10) and that on T/C given by (2) then the 
energy constitutive relation (11) and the failure criterion (1) are brought into 
unification.  This permits the definition of a measure of ductility in failure to 
be defined as 
 
 

 D* = ! *( )2   (15) 

 
The ductility property (15) was extensively treated in [1] and need not be 
further covered here. 
 
 For present purposes, the states of the renormalized elasticity theory 
and the failure theory are fully integrated with each other.  However there is 
an important and controlling proviso in this relationship.  The unification 
only occurs when Poisson’s ratio and correspondingly renormalized 
Poisson’s ratio are non-negative, (9) and (10).  It will be of first importance 
to establish whether the non-negative requirement on Poisson’s ratio is a 
fundamental property of mechanical behavior, or simply an idealized and 
beneficial condition that is usually but not necessarily always satisfied for 
homogeneous and isotropic materials.  
  



Graphene, Two Dimensional Elasticity Theory  
 

In support of the failure theory, the overall objective here is to 
rigorously prove that Poisson’s ratio for homogeneous and isotropic 
materials can never be negative.  But when the best efforts over the past two 
hundred years or so have not succeeded in proving that appealing condition 
to be true, the task begins to look quite formidable, perhaps even to the point 
of impossibility.  Certainly no straight on, frontal charge at the problem is 
likely to succeed.  All such approaches have already been tried.  The only 
“hope” may be with a more reasoned and balanced approach.  Can the 
problem be broken down into a simpler form that yields to progress and then 
admits generalization?  One such approach is apparent and available. 

 
Two dimensional formulations are always more direct and much more 

simple that three dimensional formulations.  This suggests considering two 
dimensional elasticity theory.  True two dimensional elasticity is not a sub-
space of three dimensional theory, the latter situation still remains as three 
dimensional, just simplified as with plane stress and plane strain.  True two 
dimensional elasticity immediately suggests the special case of graphene.  
So the first approach to the Poisson’s ratio problem will be to closely 
examine the two dimensional elasticity theory that is appropriate to the 
mechanical characterization of graphene.  The introduction of graphene 
further suggests the involvement of nanomechanics since the special form of 
graphene can only be described with nano-scale variables.  Furthermore, it is 
far more likely that the physical explanation for non-negative Poisson’s ratio 
is to be found at the nano-scale, than at the macroscopic scale.  

 
Accordingly, this section considers the Poisson’s ratio problem in the 

two dimensional elasticity context appropriate to graphene.  Graphene is the 
carbon based nano-structure that was first synthesized in the form of 
spherical fullerenes and then later as cylindrical form nano-tubes.  What is 
generally accepted as the standard form of graphene is the planar form of the 
bonding of carbon atoms in a single layer.  The essential characteristic is that 
this layer is only of a single atomic dimension in thickness.  Actually it has 
no easily identifiable thickness in the conventional sense.  It is an 
extraordinary material form, it has the special atomic arrangement having 
perfect symmetry in its plane, in this case hexagonal symmetry. 

 
Graphene is composed of carbon atoms and no other comparable two 

dimensional form is known to exist for any of the other elements.  Due to 



boron’s neighboring proximity to carbon in the periodic table and its 
electronic structure, it might be a candidate for supporting a two dimensional 
materials form.  But such a boron based material has never been discovered.  
The carbon form of graphene is unique.  It is the only truly two dimensional 
form of a materials continuum. 

 
Appropriate to two dimensional isotropic elasticity theory, the 

properties must be commensurately defined.  With respect to the phantom 
third direction, one cannot invoke the continuum hypothesis and define a 
third dimension for thickness identification when the graphene configuration 
is only one atom in extent.  It is not possible to define stress as force per unit 
area.  In two dimensional theory, stress must be defined as force per unit 
length.  Likewise, the appropriate moduli have units of force per unit length.   

 
The 2-D isotropic elastic moduli and Poisson’s ratio are so defined 

and satisfy the following isotropic condition identities 
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where K2D  is the two dimensional bulk modulus and the other three 
properties are similar to those defined in three dimensional elasticity theory.  
Any two of the isotropic properties are independent.  Only the first identity 
in (16) is identical with that from three dimensional theory.  The other three 
are distinctly different from the 3-D identities. 
 
 Next the two dimensional theory of elasticity will be taken up for later 
application to graphene, and ultimately to address the Poisson’s ratio 
problem.  The stored energy for 2-D elasticity is given by 
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where sij  is the two dimensional deviatoric stress given by 
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The tensor notation ranges over the two dimensional indices.  This 
convention will always be understood in all the following two dimensional 
forms. 
 
 Using the identities (16) the energy can be written as 
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where the limits 
 
 −1≤ν2D ≤1  (20) 
 
follow for a positive definite energy form. 
 



 Now a renormalization process will be applied similar to that use in 
Part I [1] of the three dimensional case.  Specifically define the renormalized 
Poisson’s ratio and renormalized elastic modulus by 
 

 ν2D
* = 2ν2D
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and 
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It follows from (21) that the limits on ν2D

*  are given by 
 
 −∞ ≤ν2D

* ≤1  (23) 
 
If negative Poisson’s ratios were not allowed then the limits in (20) and (23) 
would revert to 
 

 

0 ≤ν2D ≤1
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However, at this point there is no justification for using (24) and that leaves 
(20) and (23) as the controlling forms until proven otherwise.  In the three 
dimensional case, common experience with an enormous range of real 
materials effectively suggests that negative Poisson’s ratio cannot be 
supported.  A justification such as that is not available to be used here in the 
two dimensional case.  A compelling theoretical reason for disallowing 
negative two dimensional Poisson’s ratio must be found, if it exists. 
 
 The energy form (19) in terms of E2D

*  and ν2D
*  becomes 
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This can also be written as 
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where σ M  is the mean normal stress. 
 
 The compatible strain-stress relation is found to be 
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These constitutive relations are seen to take extremely simple forms after 
renormalization. 
 
 Using the identities (16) the renormalized properties can be compared 
with those from the standard two dimensional elasticity theory.  These forms 
are given by 
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Similar to the situation in three dimensional elasticity, the renormalized 
properties in (28) give special interpretations and insights not available 
through the standard forms (29).  In particular the !2D

*  form in (28) shows 
how the renormalized Poisson’s ratio reflects the distortional and the 2-D 
dilatational stiffness influences.  The two dimensional relations (28) and (29) 
should be compared with the corresponding three dimensional relations in 
(13) and (14). 
 
 From relation (21) the Poisson’s ratios and renormalized Poisson’s 
ratios have the corresponding values 
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A change in direction is necessary now to bring in the nanomechanics 
of graphene.  The hexagonal pattern of atomic positions and bonding is as 
shown in Fig. 1. 

 
 



 
 

Fig. 1   Hexagonal symmetry for graphene 
 
 
The carbon atoms in the hexagonal pattern have three nearest neighbors and 
shared bonding.  Following [2] the nano-scale modeling takes the bonding as 
represented by joined elastic members spanning across atomic centers and 
possessing axial and bending stiffness to represent bond stretching and bond 
bending resistances.  The stiffness coefficients are taken as 
 

 

 

kA =
A !E
l

kB =
12 !EI

l 3

  (30) 

 



Property  !E  is simply an effective elastic property for the equivalent or 
hypothetical elastic member. 
 
 The elastic member connecting atomic centers is as shown in Fig. 2. 
 
 

 
 

Fig. 2   Effective elastic member connecting carbon atoms 
 

Appropriate to the two dimensional nature of the problem the 
thickness of the equivalent elastic member is not needed and the ratio of the 
stiffness coefficients is then given by 
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Nano-scale properties κ  and 
d
l

 have the limits 
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 The bending of the equivalent elastic member is taken to be specified 
by the Bernoulli-Euler theory of bending.  The hexagonal pattern of elastic 
members can be analyzed by enforcing equilibrium of forces and moments 
at the nodes. This gives closed form solutions for the macroscopic properties 
of graphene in terms of the nano-scale property κ .  The end results are the 
solutions 
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These graphene results are remarkable for their simplicity and clarity.  The 
units of the effective macroscopic moduli are force/unit length. 
 
 Taking the limits for !  from (32), then the limits on Poisson’s ratio 
(33) are 
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As an independent check on the results in (33)-(37), it can be verified that 

!2D = "
1
3

 allows the hexagonal pattern of elastic members to deform only 

in extension not in bending at the limit κ →∞ .  Compared with the two 
dimensional elasticity limits in (20) it is seen that these physical results (37) 
cut out part of the previously permissible range of negative Poisson’s ratios.  
Still there is a partial range of permissible negative Poisson’s ratios.  In this 
sense, some progress has been made, but still it cannot be said that negative 
Poisson’s ratios cannot occur. 
 
 There have been many nano-scale models developed of the type 
shown here.  Some of these will be summarized later.  None of them give the 
same results as found here in (33)-(36).  Furthermore many of them, or 
perhaps most of them, treat the graphene problem as one having identifiable 
thickness and employ three dimensional elasticity theory.  This does not by 
itself mean that they are not correct, but for that reason they do require 
special interpretation and qualification. 
 

A highly significant relationship follows from these nanomechanics 
results.  Combining (31) and (33) gives the very special condition of       
 

 ν2D ≤ 0 when
d
l
≥1  (38) 

 

Referring to Fig. 2 for interpretation, when 
d
l

 is greater than 1 the Poisson’s 

ratio is negative.  This then requires that the size of the effective elastic 
member extends outside of the atomic dimension of the outer orbital.  And 
for Poisson’s ratio significantly less than 0, but satisfying (37) then the 
effective elastic member extends far outside the atomic dimensions. This is a 
completely unphysical situation and could not occur in the present 

conceptual model.  Values of 
d
l

 larger than 1 cannot occur, therefore 

negative values of Poisson’s ratio cannot occur.   
 

This is close to the proof that is being sought.  The reason that it is not 
precise and exact is that it cannot be certain that the cross-over from 



acceptability to impossibility occurs exactly at 
d
l

= 1.  It must be close to 

that value but perhaps there is a small region of uncertainty immediately 

near the value 
d
l

= 1.  Another independent but supporting and reinforcing 

proof of the unacceptability of negative Poisson’s ratio must still be sought. 
 
 It is helpful to collect the major results already derived at the nano-
scale.  Table 1 displays these important results from (33) for the first row in 
Table 1 and (21) gives the second row, along with their inverses. 
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Table 1   Two dimensional theory relationships between nano-scale and 

macro-scale properties 
 

The first row represents the nanoscale analysis results and the second row 
the renormalization of the two dimensional elasticity theory.  The third row 
in Table 1 combines the first two row results to represent the renormalized 
elastic Poisson’s ratio as a function of the nanoscale property !  (31). 
 
 Yet another special behavior is now evident in Table 1.  The two 
expressions in the third row are identical in form.  That is, the interchange of 



the two symbols !2D
*  and !  does not alter the functional forms relating 

them.  The two variables !2D
*  and !  are mathematical duals.  This is a 

special and unusual relationship.  The two inverse forms are also dual forms 
relating the macroscopic variable ν2D

*  and the nano-scale variable κ .  It 
can be noted that the same dual relationship occurs in the first row of Table 
1, but it is this behavior with the renormalized Poisson’s ratio in the third 
row that is the most significant.  This latter two dimensional theory result 
will be found to relate to a similar behavior in the three dimensional case in 
the next section and be of decisive use there. 
 

Now everything is arranged and ready for the final result and 
conclusion in the two dimensional case for graphene.  The relationship 
between ν2D

*  and the nano-scale property ! , is shown in Fig. 3. 
 



 
 

Fig. 3   Two dimensional ν2D
*  versus ! , Table 1 

 
 
 The horizontal axis !  in Fig. 3 is the ratio of the bond bending 
stiffness to the bond stretching stiffness (31) so the !  axis cannot take 
negative values, as shown. But because ν2D

*  and !  are duals, the axes in 

Fig. 3 can be interchanged and therefore both !  and ν2D
*  cannot be 

negative, also as shown in Fig. 3.  This is the final proof that ν2D
*  and 

thereby ν2D  cannot take on negative values. 



This is the conclusive nanomechanics proof that Poisson’s ratio for 
graphene or any other potential two dimensional elastic material with 
covalent, hexagonal bonding cannot have negative Poisson’s ratio. 
 
 It will also be of interest to determine the explicit value of Poisson’s 
ratio for graphene, and that will be done in a later section.  But at this point 
that is of secondary importance compared with proving that graphene’s 
Poisson’s ratio cannot be negative.  It is that special result that will provide 
guidance on how to proceed with the three dimensional question of whether 
Poisson’s ratio can or cannot take on negative values.  The answer to that 
question will have far reaching implications for the validity of the related 
failure theory. 
 
 
Three Dimensional Theory Proof 
 

For three dimensional theory the missing information is why 
Poisson’s ratio never seems to be negative for homogeneous and isotropic 
materials.  Is that a fundamental physical requirement or is it simply an 
extremely common occurrence?  The same question was posed for two 
dimensional elasticity theory, for application to graphene, and it was found 
and proven in the previous section that 2-D Poisson’s ratio cannot be 
negative, it is an absolute physical restriction that it be zero or positive.  Is 
there a simple carryover from 2-D to 3-D that can be applied here?  
Unfortunately there is no such simple extension of the 2-D proof to answer 
the 3-D question.  If the non-negative proposition cannot be proven for the 
three dimensional case then the connection between elasticity theory and 
failure theory becomes less strong, less physically meaningful. 
 
 A rigorous nanomechanics analysis was used to prove the condition 
!2D " 0 .  A comparably rigorous nano-scale analysis cannot be performed 
in the three dimensional case.  The 2-D hexagonal symmetry of the atomic 
arrangement for graphene has no counterpart for the three dimensional case 
that can assure isotropy.  The condition of isotropy in three dimensions is 
that of six axes of five fold symmetry.  There is no periodic arrangement of 
single type cells with the necessary symmetry that packs in 3-space.  So the 
problem cannot be approached in exactly the same manner that succeeded in 
2-space.  However, the two dimensional proof is still invaluable and it will 
be shown to generally and broadly guide the way in the much more 



complicated three dimensional case.  The outline here follows that in Ref. 
[2] but goes further to a decisive conclusion. 
 
 Postulate the existence of a nano-scale variable that represents the 
ratio of the bond bending resistance to the bond stretching resistance in three 
dimensional conditions as 
 

 !̂ = kB
kA

  (39) 

 
Going further, postulate a relationship between  Poisson’s ratio !  and κ̂  of 
the same form as in the two dimensional case, (33), thus 
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where ! , ",  and, γ  are to be determined.  The first two conditions to be 
used for this purpose are that 
 

 

ν = −1 at κ̂ → ∞

ν = 1
2

at κ̂ = 0

  (41) 

 
These are the standard limits. 
 

 The third condition comes from rescaling κ̂  such that κ = 4
3
κ̂  then 

gives 
 
 ν = 0 at κ = 1  (42) 
 
 
 



Ref. [2] gives the details.  Conditions (41) and (42) then determine (40) to 
take the form 
 

 ν = 1−κ
2 +κ

  (43) 

 
This nano-scale motivated analysis has the specific three dimensional result 
(43) comparable to the two dimensional result (33).  Relation (43) cannot be 
considered to be perfectly rigorous because it does not come from a 
nanomechanics analysis of a particular arrangement of atomic bonding 
between neighboring atoms.  But it does follow as the same general 
methodology as in the rigorous two dimensional case. 
 
 One more result from this derivation must be cited.  The bonding 
arrangement between atoms was taken the same as in Fig. 2 for the two 
dimensional case but now the dimension d refers to the diameter of the 
effective circular cylindrical effective elastic member connecting 
neighboring atoms.  It follows that the imposed condition (42) can 
equivalently be stated here as 
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 The difference between the present results and those of the two 
dimensional case is that in the two dimensional case the result (44) was the 
outcome of the nano-scale analysis whereas here it was used in the form of 
(42) to deduce the main result (43). 
 
 Now these results will temporarily be held in place while the 
renormalization of elasticity theory results are recalled.  Nothing yet is 
sufficient to argue the main question on the form of ν , but the necessary 
pieces are being assembled. 



 First, recall the renormalized forms for the two dimensional energy 
and strain-stress relations from (26) and (27), but now as stated with the 
knowledge that Poisson’s ratio cannot be negative 
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The corresponding 3-D results from (11) and (12) are 
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Note that the Poisson’s ratio restriction in (46) as yet has no counterpart in 
(47).  Comparing the two dimensional constitutive forms (46) with the three 
dimensional constitutive forms (47) they are seen to be virtually identical.  
The only differences are in the factors of 2 that enter (46) versus the factors 
of 3 that enter (47).  These differences are directly from the 2-D versus the 
3-D formulations.  This comparison of 2-D and 3-D constitutive forms 
strongly suggests that because one set, (46), cannot allow negative Poisson’s 
ratios it is very likely that the other set, (47), must also be similarly 
restricted.  Suggestive though this may be, it still is not a proof.  It still must 
be proven that 3-D Poisson’s ratio cannot be negative.  However everything 
is now in place to complete the last step in the proof. 
 
 Corresponding to Table 1 for the two dimensional proof, the main 
results for the three dimensional case are assembled in Table 2. 
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Nanomechanics ! =
1"#
2 +#

 ! = 1" 2#
1+#

 

Renormalization ν * =
3ν

1+ν
 ! =

! *

3"! *  

Combination ! * = 1"#  ! = 1"# *  

 
Table 2   Three dimensional theory relationships between nano-scale and 

macro-scale properties 
 
 The first row in Table 2 is from (43) and its inverse form relating !  
and the nano-scale property ! .  The second row is the renormalized 
Poisson’s ratio as related to the classical form, namely (6).  Finally the third 
row results comes from the combination of the first two row forms. 
 
 As with the two dimensional results in Table 1, a special result 
emerges in the Table 2 forms.  The relationship between macroscopic 
Poisson’s ratio ! *  and the nano-scale property κ  is that the form and its 
inverse are identical.  That is, the interchange of the symbols ! *and κ  
produces a form that is unchanged and identical with its inverse.  Properties
! *and κ  are mathematical duals.  The same duality property cannot be said 
of the relationship between !  and κ  in the first row of Table 2.  This is the 
power of the renormalization methodology for elasticity theory. 
 

Finally, the relationship between ! *and !  in Table 2 is as shown in 
Fig. 4. 

 



 
 

Fig. 4   Three dimensional ! *versus ! , Table 2 
 
 
 From the definition of !̂  and thereby !  the nano-scale property must 
be positive, !  is the ratio of the bond bending stiffness to the bond 
stretching stiffness.  With the requirement of non-negative !  and the dual 
nature of !  and ! *  it follows that ! *must also be non-negative.  To say 
this another way, properties ! *and κ  can be interchanged without altering 
the functional interdependence between them.  Since κ  must be non- 



negative it follows that so too renormalized  Poisson’s ratio must be non-
negative.  The end result is that 
 
 0 !" * !1 Proved   (48) 
 
 

 0 !" !
1
2

Proved   (49) 

 
These are the same as in (9) and (10) except that there they were assumed, 
here they are proved.  A requirement of positive macroscopic energy was not 
used in this nano-scale proof, although it certainly is satisfied.   
 

For full density, homogeneous and isotropic materials that satisfy the 
condition (2) on the failure properties T and C, then the condition (48) on 
! *  provides the compatibility between the failure theory and the 
renormalized elasticity theory.  In the present context, the term 
homogeneous means that the elastic behavior is controlled by features at the 
nano-scale, not at the macroscopic scale.  From this proof it is seen that 
negative values of Poisson’s ratio require physically unrealistic, absurdly 
large values of the bond bending resistance compared with the bond 
stretching resistance. 
 
 
Two Dimensional and Three Dimensional Theory Consequences 
 
 It is of some interest to go a little further with relevant property 
values.  To finish this treatment of two dimensional graphene and three 
dimensional theory, it is of explicit interest to determine the Poisson’s ratio 
for graphene.  Since graphene is the pure form of the carbon atom in two 
dimensions, it is equally important to examine the corresponding property 
for the carbon atom in three dimensions, namely for diamond.  Ideally, it 
would be advantageous to start with the Poisson’s ratio for diamond and 
then incorporate that into the present theoretical results to predict the 
Poisson’s ratio for graphene and compare that with reported values. 
 
 It is somewhat surprising to find that the Poisson’s ratio value for 
polycrystalline diamond is not well established and standardized.  Its 



determination is still a quite controversial subject.  Measured values are 
claimed that range from ! = 0.07 up to quite large values in the range from 
0.3 to 0.4.  Theoretical predictions based upon single crystal anisotropic 
properties also have an enormous range of predicted values.  However, by 
far the most commonly reported experimental value is that of ! = 0.2.  The 
apparently more realistic values are those reported for so called amorphous 
diamond, as with those in thin film technology.  The most reliable 
measurements appear to be those from Cho et al [3] and Cho et al [4].  The 
Ref. [3] measure is ! = 0.17 ±  0.03 and that of Ref. [4] is ! = 0.22.  Other 
related references are those of Robertson [5], Greaves et al [6], and Spear 
and Dismukes [7].  The Poisson’s ratio for polytcrystalline diamond, based 
upon these most commonly reported values, will here be taken as 
 

 ! =
1
5

Diamond   (50) 

 
Now, attention is turned to graphene.  The Poisson’s ratio for 

graphene can be determined from that for single wall nano-tubes.  For nano-
tubes the two atomic configurations of “zigzag” and “armchair” have 
different expected values for their Poisson’s ratios, but they converge 
together as the diameter of the nano-tube increases.  As with diamond, there 
is a very wide range of predicted values for Poisson’s ratio of graphene.  
Related references are Chang and Gao [8], Popov et al [9] , Tu and Yang 
[10], Li and Chou [11], Treacy et al [12], Zhao and Shi [13], and Scarpa et al 
[14].  The major works by Chang and Gao [8] and Popov et al [9] are the 
most definitive.  The former predicts the Poisson’s ratio of graphene as 0.16 
and the latter as 0.212.  The other reported theoretical predictions for !2D  of 
graphene range from about 0.125 to 0.85. 
 
 The ideal theoretical prediction of the in-plane properties of graphite 
has been given by Al-Jishi and Dresselhaus [15], which material form is 
intimately related to that of graphene.  Explicit values for Poisson’s ratio 
were not given.  The measured value of Poisson’s ratio for graphene by Lee 
et  al [16] is !2D = 0.165.  The predicted and measured values of Poisson’s 
ratio for graphene, although scattered broadly, are fairly well centered on the 
value of  !2D = 0.20 or a little less. 
 



 Next the prediction for the Poisson’s ratio of graphene from the 
present results will be given.  The starting point is the Poisson’ ratio of 
diamond at the value ! = 1/5, (50), as discussed earlier.  From Table 2 the 
corresponding value for the nano-scale property!  for diamond is then 
 

 ! =
1" 2#
1+# #=1

5

=
1
2

Diamond   (51) 

 
This is the effective ratio of the three dimensional bond bending stiffness to 
the bond stretching stiffness.  Since this is the intrinsic property for the 
carbon atom, the same value of ! = 1/2 will be taken for ! in the two 
dimensional case of graphene.  From Table 1 the Poisson’s ratio of graphene 
is then given by 
 

 !2D =
1"#
1+ 3# # =1

2

=
1
5

Graphene   (52) 

 
Thus diamond and graphene are here predicted to have about the same 

Poisson’s ratio of 1/5.  This is in reasonable accord with practice, as already 
discussed.  The corresponding renormalized Poisson’s ratios are ! *= 1/2 
and !2D

* = 1/3. 
 
Before leaving this extensive and intensive examination of Poisson’s 

ratio, for both general and specific cases, one final related matter should be 
discussed.  Although this is the first and only proof that Poisson’s ratio 
cannot be negative for homogeneous and isotropic materials, there have been 
many studies over history on various other aspect of this unusual and poorly 
understood nondimensional property.  For example, Mott and Roland [17] 
purport to prove that “classical elasticity is inapplicable whenever ! < 1/5”.  
At the other extreme, negative values of Poisson’s ratio have been reported 
for so called “auxetic” materials [6].  But these are porous materials and 
thereby not homogeneous.  They lie outside the range of present 
considerations.  Poisson’s ratio has always been something of a mystery 
property.  Its true significance should finally be understood and utilized. 

Much of what has been done here revolves around graphene and 
makes use of its very special properties.  At the level of a continuum of 



atoms in two dimensions it very likely is the perfect material.  Although it is 
unique in this sense, it is almost ridiculously common in another sense.  
Graphite is simply the common macro-scale form of graphene.  Necessarily 
graphite exists only with  dominant flaw and defect sub-structures.  Graphite 
is extremely useful as a solid lubricant and for a variety of other things.  
However, “low tech” graphite can be converted to some very specialized 
“high tech” applications.   

 
With heat and pressure, randomly oriented grains of graphite can be 

formed into very special materials having considerable structural integrity.  
The flame exposed surface of rocket nozzles is one such example of a 
graphitic material that must withstand severe heat environments.  For that 
purpose Ely [18] has tested the strength properties of fused graphite.  The 
present failure theory can be compared with the biaxial stress testing data, 
Fig. 5. 

 
 

Fig. 5   Biaxial failure data for fused graphite, Ely [18] 



The theoretical predictions are from (1) and (5).  T and C are taken as 
 

 

T = 3,800 psi = 26.2 MPa

C = 10,000 psi = 68.9 MPa
  

 
The fracture cutoff effect is fairly prominent in Fig. 5 even though the T/C 
ratio is only slightly smaller than 1/2.   
 

If all the major data groupings in Fig. 5 were fitted by unphysical, 
blind polynomial forms, the resulting envelope would contain concave as 
well as convex portions.  That behavior is not possible in the present 
physical context.  The reality of fitting failure data often (usually) involves 
taking best fits, far short of perfection.  Such is the case here.  Often the data 
scatter and inconsistency is due to batch to batch variations in preparing test 
specimens.  Failure measurements are acutely sensitive to this complication, 
much more so than are elastic modulus measurements. Nevertheless, the 
comparison in Fig. 5 is reasonable and this graphite example fits in with all 
the other widely different materials examples shown in the previous 
verification examinations for this failure theory.  
 
 
Distortion and Dilatation 
 

The second question posed in the introductory section will now be 
taken up.  What is the most effective and most efficient way to calibrate a 
general theory of failure?  Most would say that the best way to proceed 
would be through the failure stresses in states of shear and dilatation.  The 
present theory uses the failure stresses in uniaxial tension and compression.  
Another way to pose the question is to suggest or infer that it may seem to 
some to be unlikely that a comprehensive failure theory intended for 
applications having multi-dimensional stress fields, could be completely 
specified by and anchored by only data from uniaxial failure. 
 
 To resolve this issue of the proper basis for failure theory, it is 
convenient to start with the present failure theory given by (1) and (5).  
These are completely calibrated by T and C.  Following and amplifying Ref. 
[2], consider how these forms would appear if calibrated by failure in simple 



shear, S, and by positive dilatation failure, D+.  Using (1) it is found that S 
and D+ are specified by 
 

 S2 = TC
3

  (53) 

 

 D+ =
TC

3 C !T( )   (54) 

 
These can be inverted to give T and C in terms of S and D+ as 
 

 T =
S2

2D+ !1+ 1+12
D+

S
"
#$

%
&'

2(

)

*
*

+
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-
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  (55) 

 

 C =
S2

2D+ 1+ 1+12
D+

S
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
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  (56) 

 
The polynomial invariants criterion (1) would then be given by 
 
!̂ 1 + !̂ 2 + !̂ 3( )

3D+ +
1

6S2 !̂ 1 "!̂ 2( )2 + !̂ 2 "!̂ 3( )2 + !̂ 3 "!̂ 1( )2#
$

%
& '1  (57) 

 
where principal stress notation is used.  Comparing (1) and (57) it is seen 
that this failure criterion is perfectly well and effectively specified in terms 
of failure in shear, S, and in positive dilatation, D+. 
 
 It remains to consider the fracture criterion (5) in terms of S and D+.  
It is found that with ! 1  being the largest principal stress (5) becomes 
 



 σ 1 ≤
S2

2D+ −1+ 1+12
D+

S
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

if
D+

S
≤ 2

3
  (58) 

 
The T/C term in (5), when using (55) and (56), ultimately reduces to the 
form in (58). 
 
 Here is where the difficulty arises.  The fracture criterion (58) in terms 
of S and D+ is rigorously the same as (5) but physically it is total nonsense.  
In the form in (58) it loses all identification with a fracture event controlled 
by the largest positive principal stress. 
 
 In another example, Ref. [2] gives a method for determining the 
ductile brittle transition for all materials types in any stress state.  For simple 
tension the D/B transition is given by 
 

 

T
C

<
1
2

Brittle

T
C

>
1
2

Ductile

  (59) 

 
This D/B criterion is very easily interpreted and verified with commonly 
available data.  In contrast, for the state of simple shear, the D/B criterion in 
terms of S and D+ is found to be given by 
 

 

D+

S
<

1
2

Brittle

D+

S
>

1
2

Ductile

  (60) 

 



This result is difficult to interpret and in terms of practical utility, it is 
virtually useless 
 
 In response to the criticisms just given, a rejoinder could say, yes but 
these forms start with the forms of the present failure theory.  What if a new 
theory were developed entirely in terms of shear and dilatation failure.  Of 
course it is totally speculative to suggest what form such a theory would 
take, but it is likely that it would arrive at something very much like the 
form in (57), if not identical with it.  This is not only because the form in 
(57) is calibrated by S and D+, but also because the two individual terms in 
(57) are explicitly those of positive dilatation for the first term and pure 
distortion for the second term.   
 

A two property failure theory expressed purely in terms of shear and 
positive dilatation could hardly arrive at anything except something similar 
to (57).  This would then completely omit the presence of the fracture 
criterion, (5).  The consequence of this omission would be an incomplete 
failure theory.  The brittle limit given by T/C = 0  in the present theory (with 
profound implications) would have no counterpart in the purely distortion 
and dilatation theory.  Looking to the next step beyond this first conclusion, 
it also follows that the ductile brittle transition and related developments 
defined in the present theory would have no counterpart in the hypothetical 
theory based only on distortion and dilatation. 
 
 It is necessary that a general two property failure theory be formulated 
with one part involving the interactive shear/dilatation mechanism and the 
other part a competitive criterion representing a fracture mechanism.  Such a 
theory could only be formulated in terms of uniaxial tensile and compressive 
failures.  Uniaxial strengths T and C comprise the most fundamental form of 
the material failure specification for homogeneous and isotropic materials. 
 
 
Summary and Significance  
 

It is not just a coincidence that the present theory of failure is fully 
specified by just two properties of failure, the same as the number of 
independent elastic constants for homogeneous and isotropic materials.  The 
explicit connection between elasticity theory and failure theory was 
established and discussed at length in Part I [1] of this work.  That 
relationship coordinates completely with the manner of derivation of the 



failure theory [2], which was based upon viewing failure as the termination 
of the elastic range of behavior, even when plasticity occurs.  Nevertheless 
one specific and crucial assumption was required in order to obtain the 
comprehensive theory.  That same assumption or uncertainty has been an 
enduring problem every since the conception and early development of 
elasticity theory by the founders of physical science. 

 
The critical underlying assumption of Part I was that of the positive 

values for Poisson’s ratio.  If Poisson’s ratio could be negative then the 
entire connection between elasticity theory and failure theory would reduce 
to only that of a correlation.  Accordingly, this Part II of the study has been 
committed to proving the efficacy of non-negative and only non-negative 
Poisson’s ratios for homogeneous and isotropic materials.  This proof was 
accomplished through the conjunction of two unusual developments.  First, 
classical elasticity theory was renormalized to give a special form revealing 
basic behaviors, especially that of renormalized Poisson’s ratio.   

 
The second development was a nano-scale analysis of graphene 

giving closed form analytical solutions for the associated elastic properties.  
The two dimensional renormalized elasticity theory when combined with the 
nanomechanics analysis yielded the proof that two dimensional Poisson’s 
ratio cannot be negative.  This assurance of consistent mechanical behavior 
at the two dimensional level then led to a generally similar proof of 
existence for only non-negative three dimensional Poisson’s ratios.  The 
resulting unified theory of elasticity and theory of failure is now consistent 
and compatible in all respects. 

 
The key mechanics result that made this possible was the two 

dimensional elasticity theory as applied to the characterization of graphene.  
As a material architecture at the nano-scale, graphene is not only unique, it is 
sublime.  It possesses the perfect nanostructure and that allows nearly 
perfect mechanical behavior.  Positive Poisson’s ratio is an important and 
integral and necessary part of graphene’s many attributes. 

 
In related matters, it also is no surprise that the proof of non-negative 

values of 2-D and 3-D Poisson’s ratios for homogeneous and isotropic 
materials was consummated at the nano-scale, not at the macro-scale.  It 
very likely could not be accomplished at the macroscopic scale. 

 



With the proof that Poisson’s ratio must be non-negative, it is now 
obvious that E and !  are the fundamental elastic properties, not µ  and k.  
The shear modulus and bulk modulus have more restrictive ranges than they 
would otherwise have.  Furthermore, with this result it is also transparently 
clear why T and C as conjugates to E and !  are the corresponding 
fundamental failure forms. 

 
For general materials, the occurrence of plasticity behavior as an 

interim passage between initial yield and effective failure does not upset any 
of the associations already discussed.  The method by which failure is 
defined in Chp. 9 of Ref. [2] allows ample latitude for plasticity in between 
the elastic range and effective failure. 

 
For many different reasons the two calibrating properties for the 

failure theory were found to be those of the uniaxial tensile and compressive 
strengths.  They were not casually adopted simply because of their obvious 
convenience.  The basis of their use was totally different from that.  Going 
even further, it would be justified to say that the failure theory would not 
have been possible without the involvement of the materials failure identifier 
T/C.  The brittle limit at T/C = 0 very likely would have remained a vague 
and elusive and ill defined concept without the T/C involvement.  That the 
T/C ratio would be found to admit characterization as the ductility index for 
simple tension could not have even been imagined.  But these results and 
much more were the normal and natural outcomes when the T/C based 
failure theory was assembled and functioning.  The T/C identification and 
the theoretical relationship between elasticity and failure provided the 
essential and probably unique capability for the failure methodology. 

 
This final synthesis of combined elasticity and failure theories 

completes the foundation for failure theory and provides the general basis 
for the failure mechanics of homogeneous and isotropic materials. 
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