
 
XV. FAILURE MECHANICS: THE COORDINATION BETWEEN 

ELASTICITY THEORY AND FAILURE THEORY 
 
 
Status of Failure 
 
   This work establishes an important relationship between 
elasticity theory and failure theory for three dimensional 
homogeneous and isotropic materials.  At first exposure, one could 
reasonably question how there could possibly be any such 
connection between the elasticity formulation and that of failure.  
For well over a hundred years mainstream thinking has held that 
elastic behavior at increasing levels of stress yields into plastic 
behavior and that then progresses until some critical plasticity limit 
condition inevitably requires final and complete rupture.  Unless 
the failure was totally brittle, failure has nearly universally been 
perceived as the ultimate extreme and conclusion of plastic 
deformation.  It is so reported in virtually all tables of properties 
for specific materials. 
 
   A newly developed failure theory has challenged that 
longstanding, conventional view.  This new theory, Christensen 
[1], is based upon two physical postulates.  The first is that failure 
represents the termination of elastic behavior, not plastic behavior.  
This is obviously true for brittle materials, but for elastic-plastic 
behavior, failure is still taken to most fundamentally signify the 
cessation of the previous elastic behavior.  The possible occurrence 
of plasticity simply represents a more complex transition from the 
elastic state to the failure state than occurs with brittle materials. 
 
   The common elastic-perfectly plastic idealization convincingly 
illustrates the futility of trying to use plasticity to directly and 
solely define failure in terms of an actual rupture.  Other contrary 
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examples also are apparent, but have not been sufficiently well 
appreciated. 
 
   This new approach for failure theory in no way detracts from the 
meaning, the value, and the usefulness of plasticity theory.  There 
are large classes of problems involving highly nonlinear and 
permanent deformation requiring plasticity treatments.  It simply 
asserts that the general definition of three dimensional failure 
criteria must be viewed by means other than through the lens of 
ultimate plastic deformation. 
 
   The second and equally important key to the new theory of 
failure is the hypothesis that the strengths ratio T/C covers the full 
range of all possible behaviors for homogeneous and isotropic 
materials.  Symbols T and C are the failure stresses in uniaxial 
tension and compression.  Thus 
 

 0 ≤ T
C

≤1  

 
provides the failure descriptor for all failure types and classes. 
 
   There is an important corollary and consequence to this ratio of 
the uniaxial strengths as representing the full and complete 
spectrum of possible failure behaviors. It follows from this 
hypothesis that the general theory must be of a two property form, 
not the three or four or more parameters empirical forms that are 
often thought and argued to be necessary. 
 
   These two physical hypotheses are sufficient to guide the way to 
the mathematical development of the general, complete, and self 
contained theory of materials failure, [1], for full density, 
homogeneous and isotropic materials. 
 



   After stating the controlling forms for the new failure formalism 
and for linear elasticity, their explicit relationship will be closely 
examined in the next two sections.  It will be shown that there is a 
type of coordination or coupling between the two formalisms.  
This coordination concerns the differentiation between ductile and 
brittle types of failures.  The elasticity part of the combination 
reveals new and independent information on this important subject.  
The enabling development that makes this possible is the 
renormalization of the classical theory of elasticity, presented here 
for the first time.   
 
   Finally, the last section considers the unification of elasticity 
theory and failure theory and treats the overall discipline as that of 
failure mechanics.  This failure mechanics is for homogeneous and 
isotropic materials and it is completely separate from and 
complementary to the field of fracture mechanics.  The overall 
coverage and significance of all of the historical mechanics related 
disciplines, including these two, are given a final survey and 
assessment. 
 
Note on References and Content:  All references to previous 
supporting work will be through the new book “The Theory of 
Materials Failure”, Ref. [1].  However, the results in this website 
are completely compatible with the corresponding results in the 
book.  The advantage of the book lies in its more extensive 
treatments of background and history, for further details into the 
difficult derivations, and for interpretations.  Although the 
following developments will likely seem somewhat complex and 
far from routine, they will be rewarding for the new information 
and insights that they offer into materials failure. 
 
Failure Theory and Renormalized Elasticity Theory 
 
   The constitutive relations for linear, isotropic elasticity theory 
will be recalled for use here in one of its many but equivalent 



forms.  The most obvious and natural form is that of the expression 
of the elastic energy partitioned into dilatational and distortional 
terms and calibrated by the corresponding properties.  This can be 
done with either stresses or strains.  The account here will begin 
with stresses and then later return to strains.  This form of elastic 
energy is given by 
 

 U = 1
2k

σ ii

3
⎛
⎝⎜

⎞
⎠⎟
2

+ 1
4µ

sijsij   (1) 

 
where k is the bulk modulus and µ is the shear modulus.  The 
deviatoric stresses and strains are defined by 
 

 

sij =σ ij −
δ ij

3
σ kk

eij = ε ij −
δ ij

3
ε kk

  (2) 

 
   The failure theory given by Christensen [1] has the basic 
criterion developed by the method of polynomial invariants as 
 

 1− T
C

⎛
⎝⎜

⎞
⎠⎟ σ̂ ii +
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ŝij ŝij ≤
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where the stress is nondimensionalized by the compressive 
strength 
 

 σ̂ ij =
σ ij

C
  (4) 



and where T and C are the failure stresses with the brittle to ductile 
limits and range specified by 
 

 0 ≤ T
C

≤1  (5) 

 
The failure criterion (3) is and must be supplemented by a 
competitive fracture criterion given by 
 

 σ̂ 1 ≤
T
C

if T
C

≤ 1
2

  (6) 

 
where σ1 is the maximum principal stress.  See Ref. [1] for the full 
background, motivation, the derivation, and for the interpretation 
of this new theory of failure. 
 
   All the attention here will be upon the polynomial invariants 
failure criterion (3).  Nothing will be done here that involves or 
would be superseded by the fracture criterion (6). 
 
   The elastic energy (1) and the failure criterion (3) are from 
completely independent derivations with each receiving an 
independent polynomial invariants type of expansion in the 
invariants of the stress tensor. 
 
   It will be helpful to express the elastic energy (1) in the 
alternative and less obvious, hybrid form using Young’s modulus, 
E, and Poisson’s ratio, ν, but still retaining the dilatational and 
distortional source terms.  This converts (1) to 
 

 U = 1
2E

1− 2ν( )
3

σ 2
ii + 1+ν( )sijsij

⎡
⎣⎢

⎤
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  (7) 

 



where it is clear that ν must have the limits 
 

 −1≤ν ≤ 1
2

  (8) 

 
Hencforth E will be referred to as the elastic modulus. 
 
   Compare the elastic energy (7) and the failure form (3).  They are 
of somewhat similar forms but with some distinct differences, 
especially in the quadratic dependence on σii in (7) but the linear 
dependence on it in (3).  These two forms (3) and (7) appear 
slightly more similar when (7) is rewritten as 
 

 U =
1+ν( )
2E

1
3
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1+ν

⎛
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   Using the limits for ν in (8) and the limits for T/C in (5) then the 
range of the coefficient of σ̂ ii  in (3) is from 0 to 1 while the range 
of the coefficient of σ ii

2  in (9) is from 0 to ∞.  In a sense the 
elasticity theory based on (7) is formalized such that the governing 
property, ν, is normalized at the value of ν = -1.  It could be helpful 
if the elasticity theory were renormalized with a different 
nondimensional variable.  Renormalization is often used in physics 
for special utility or for new insights.  The renormalization will be 
centered on ν = 0.  All properties will be taken to be unchanged at 
and only at ν = 0. 
 
   As the first step in this direction, recognize that it is only the 
positive values of ν that are physically realistic, 0 ≤ ν ≤ ½.  
Negative values for ν are never found for homogeneous and 
isotropic materials.  There is a very good reason for this behavior 
and it exists at the nano-scale.  This restriction will be detailed 



later.  But for now, it is henceforth taken that only positive values 
of ν carry and convey physical reality. 
 
   It would furthermore be advantageous if the elasticity theory 
could be renormalized such that ν with 0 ≤ ν ≤ ½ renormalizes to a 
variable that ranges from 0 to 1 the same as with T/C in (5). 
 
   So the renormalization of elasticity theory is the main objective 
here.  To this end, compare the coefficients of σ ii

2 and σ̂ ii  in (9) 
and (3).  To bring them into closer alignment take 
 

 
1− 2ν
1+ν

⎛
⎝⎜

⎞
⎠⎟ = 1−ν

*   (10) 

 
where ν* is a tentative new nondimensional property. Solving (10) 
for ν* gives 
 

 ν * = 3ν
1+ν

  (11) 

 
Thus ν* is found directly and solely from ν. 
 
   Over the range of ν in (8) it follows from (11) that ν* has the 
range 
 
 −∞ ≤ν * ≤1  (12) 
 
But over the physically relevant and physically acceptable range of 
ν as 
 

 0 ≤ν ≤ 1
2

  (13) 

 



then from (11) the corresponding range on ν* is 
 
 0 ≤ν * ≤1  (14) 
 
   The range of ν* in (14)  is of the required form needed to move 
forward.  The new property ν* in place of ν is the renormalized 
Poisson’s ratio. 
 
   Correspondingly take the renormalized elastic modulus as 
 

 E* = E
1+ν

  (15) 

 
Then the renormalized constitutive relation for linear elasticity 
from (9), (11), and (15) is given by 
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1−ν *( )
3
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where ν* has the general range of (12) but the physically restricted 
and realistic range of (14).  Renormalized modulus  E* is always 
positive. 
 
   From this point onward the range of ν* will always be taken as 
(14) even though it applies over the full range of (12).  Next the 
consequent elastic forms that follow from (16) will be derived. 
 
   The classical two Lame′ constants and the bulk modulus are 
given by 



 

λ = νE
1+ν( ) 1− 2ν( )

µ = E
2 1+ν( )

k = E
3 1− 2ν( )

  (17) 

 
These properties in terms of E* and ν* are then given by 
 

 

λ = ν *E*

3 1−ν *( )

µ = E*

2

k = E*

3 1−ν *( )

  (18) 

 
   The variational result 
 

 ε ij =
∂U
∂σ ij

  (19) 

 
gives the consequent strain-stress relations from (16) as 
 



 ε ij =
1
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σ ij −
ν *

3
δ ijσ kk

⎡
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⎦
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   The other two complementary forms are found to be the energy 
form in terms of strains as 
 

 U = E*
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1
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and the stress-strain relations as 
 

 σ ij = E
* ε ij +

ν *
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   Taking mean normal stresses and strains as 
 

 

σ M = σ ii

3

εM = ε ii
3

  (23) 

 
then gives the slightly different forms of the four elastic 
constitutive relations as being 
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 ε ij =
1
E*

σ ij −ν
*δ ijσ M⎡⎣ ⎤⎦   (26) 
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where E* and ν* are defined by (15) and (11), and subscript M is 
not an index. E* and ν*could be determined other than from the 
experiments implied in (11) and (15).  This will be outlined in the 
next section. 
 
   These two groups of four relations (16), (20), (21), and (22) or 
(24)-(27) specify the renormalized forms of linear elasticity. Any 
one of the four relations serves to define the other three.  These 
four simple forms remain as the same  classical theory of elasticity, 
there are no approximations.  Furthermore, these tensor results are 
probably the most compact, and most concise statements of the 
linear elastic constitutive relations.  The advantage of expressing 
energy and strains in terms of stresses, (24) and (26), is apparent. 
 
   The four constitutive forms also reveal that the two properties E 
and ν, with subsequent E* and ν*, are highly preferable and more 
basic than the pairing of µ and k.  The properties µ and k in these 
four forms lack the same symmetry and simplicity and in some 



cases are ambiguous because of unlimited behaviors in limiting 
cases. 
 
   There likely is no advantage in using this new formalism for two-
dimensional or one-dimensional conditions, nor for numerical 
computations.  It is purely for the three dimensional formulation 
that is needed for basic theory purposes, especially in relation to 
failure conditions.  It is somewhat surprising that this renormalized 
formulation of elasticity theory was not recognized much earlier in 
the past 100-150 years of intensive study. 
 
   From relation (11) some corresponding values of ν and ν* are 
given by 
 

ν ν* 
0 0 

1/8 1/3 
1/5 1/2 
1/3 3/4 
1/2 1 

 
   Inverting (11) and (15) gives ν and E expressed in terms  of ν* 
and E* as 
 

 ν = ν *

3−ν *
  (28) 

 

 E = 3E*

3−ν *
  (29) 

 
Some further relationships are as follows 
 



 

E* = E at ν = ν * = 0

E* = 2
3
E at ν = 1

2
, ν * = 1

  (30) 

 
Although E* and E are about the same size there is a significant 
difference and the proper property is E* not E for the three 
dimensional calibration of elastic constitutive equations. 
 
   E* is the universal and dimensional property expressing a 
materials general capability to resist deformation while bearing 
load.  Property ν*is the universal and nondimensional new property 
with what will be found to be a deep and insightful interpretation 
of what must be happening at the atomic scale that controls the 
balance of the energy sources involving the dilatational versus the 
distortional resistance. 
 
   Both the elastic energy form (16) and the failure form (3) involve 
a single dimensional property and a single nondimensional 
property.  It follows that the limits of the nondimensional property 
in (16) associates with either a ductile or a brittle failure condition 
in uniaxial tension as given by 
 

 

ν * = 0 Totally Brittle

ν * = 1 Perfectly Ductile

  (31) 

 
   The basis for relations (31) is as follows.  At ν*= 0 the 
constitutive relation (26) shows that the stress and strain tensors 
are co-axial, there is no Poisson’s ratio effect.  This means that 
there is no coupling between the stress components.  Then the 
related failure behavior corresponds to the maximum normal stress 



criterion of Lame′ and Rankine, which has always been interpreted 
as that of brittle fracture.  Therefore this limit of ν*= 0 is taken as 
that of the totally brittle state. 
 
   At the other limit of ν*= 1, relation (24) shows that there is no 
dilatational contribution to the energy and (25) shows that there is 
no dilatation, εM= 0.  The deformation is purely distortional.  This 
is the state of incompressibility which usually corresponds to the 
behavior of elastomers and approached by extremely ductile 
metals.  This is the state of perfect ductility. 
   
   Relations (31) give the first indication of a possible coupling 
behavior between the two very different theories of mechanical 
behavior, elastic energy and failure.  The ductile versus brittle 
behavior as a function of T/C is fully explored in Ref. [1].  That the 
Poisson’s ratio through ν* also associates with brittle versus ductile 
behavior comes as an unexpected result from this derivation.  
However, it is not completely unexpected from a practical, 
observational point of view.  Beryllium has a Poisson’s ratio of 
virtually 0 and it is very brittle.  Gold has a very large Poisson’s 
ratio and it is very ductile.  It is this possible relationship between 
ν* and ductility that will be pursued further. 
 
   As a prelude to the further developments, it can now be 
rationalized that there could conceivably be some relationship 
between elasticity theory properties and failure theory properties, 
especially since failure is perceived as the termination of elastic 
behavior. 
 
The Coupling Between Elasticity and Failure 
 
   As derived in Ref. [1] the state of uniaxial tension has a specific 
measure of the degree of ductility D through 
 



 D = T
C

Uniaxial Tension   (32) 

 
This extraordinarily simple ductility measure goes from 0 to 1 
meaning from the state of total brittleness to the state of perfect 
ductility.  Similar although more complicated forms for the 
ductility measures can be derived for any stress state and are done 
so in [1].  But the interests here are solely with uniaxial tension 
since it is by far the most important special case, and it is 
universally used to calibrate comparative ductility levels for 
different materials.  The ductile brittle transition for uniaxial 
tension in (32) is at T/C = 1/2.  This also is explained and explored 
at length in [1] and will later be derived here by a different method. 
 
   In view of the ductility limits shown in (31), it follows that the 
renormalized elastic property ν* may have some use as a 
continuous measure of the degree of ductility in uniaxial tension.  
To this end, take D* as the possible measure of ductility in terms of 
ν*.   At this point it is only known from (31) that D* as a function 
of ν* has the limiting behaviors 
 
 

 

D* ν *( ) = 1 at ν * = 1

D* ν *( ) = 0 at ν * = 0

  (33) 

 
   Let the possible ductility measure take the general power law 
form 
 

 D* ν *( ) = ν *( )n , n ≥1  (34) 
 



The form, (34) satisfies the required limits in (33).  The exponent n 
in (34) must be taken to satisfy some as yet unspecified but logical 
condition.  This condition must involve compatibility with the 
observed behaviors of the entire spectrum of isotropic materials 
types. 
 
   At this point the elastic energy and the polynomial invariants 
failure criterion from (16) and (3) will be rewritten here for direct 
comparison with each other.  These are 
 

 
1−ν *( )
3
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2 + sijsij = 2E

*U   (35) 

 
and 
 

 1− T
C

⎛
⎝⎜

⎞
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T
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  (36) 

 
where the limits on ν* are given by (14) and those on T/C by (5).  
 
   Note that all the forms and properties in the two relations (35) 
and (36) are either quadratic or linear in form.  In accordance with 
these characteristics, the most likely values for exponent n in (34) 
are either n = 1 or n = 2, linear or quadratic. 
 
    From (36) it is seen that T/C in the first term is linear and this 
may therefore favor taking n = 1 in the ductility measure (34).  On 
the other hand, it is also seen that T/C is associated with the linear 
term σ̂ ii  in (36) while ν* is associated with the quadratic term σ ii

2  
in (35).  This may favor taking n as being quadratic, n = 2. 
 
   More specific reasoning to ascertain the proper value for n is as 
follows.  The ductile brittle transition in terms of T/C is at 



T/C =1/2.  This was developed by a general and elaborate 
methodology in Ref. [1].  A much simpler approach will be 
sufficient for the restricted case of uniaxial tension and will now be 
given. 
 
For uniaxial stress, σ, the failure criterion (36) reduces to 
 

 

1− T
C

⎛
⎝⎜

⎞
⎠⎟
σ
C

+ σ
C

⎛
⎝⎜

⎞
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≤ T
C
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Dilatational Distortional

  (37) 

 
For uniaxial tensile failure at σ = T and for equality in (37) it 
becomes 
 

 1− T
C

⎛
⎝⎜

⎞
⎠⎟ +

T
C

⎛
⎝⎜

⎞
⎠⎟ = 1  (38) 

 
The separate sources from dilatation and distortion are so labeled 
in (37).  At the two limits, (38) becomes 
 

 

At T
C

= 1, 0 +1= 1

↑
Distortional

  (39) 

and 



 

At T
C

= 0, 1+ 0 = 1

↑
Dilatational

  (40) 

 
At the first limit, (39) the distortion source dominates and the 
behavior is ductile.  Of course plasticity behavior will ensue near 
the T/C = 1 end of the scale since the distortional source 
dominates.  At the second limit, (40) the dilatation source 
dominates and the failure behavior is brittle. 
 
   At the value of T/C = 1/2, (38) becomes 
 

 At T
C

= 1
2
, 1

2
+ 1
2
= 1  (41) 

 
and the dilatational source and the distortional source are in 
balance and this is taken as the ductile brittle transition.  Thus the 
value T/C = 1/2 denotes the ductile brittle transition in uniaxial 
tension for this failure criterion.  This is in accordance with the 
much more general method from [1]. 
 
   Just as T/C = 1/2 gives the ductile brittle transition, the 
corresponding ductile brittle transition in terms of ν* will be taken 
as mid-way between the limits for D* of 0 and 1, namely at D* = 
1/2.  The two candidate measures for D* then give the respective 
ductile brittle transition as occurring at 
 

 n = 1, D* = ν * = 1
2

  (42) 

 
or at 



 n = 2, D* = ν *( )2 = 12 , ν * = 1
2

  (43) 

 
   From relation (28) it further follows that the conceivable ductile 
brittle transition occurs at     
 

 n = 1, ν = 1
5

  (44) 

or at 
 

 n = 2, ν = 1
3 2 −1

= 0.3084   (45) 

 
The n = 1 prediction of the ductile brittle transition as occurring at 
ν= 1/5 is completely unrealistic.  Materials such as carbon 
(diamond) and silicon are near this value of Poisson’s ratio and 
they are distinctly brittle in failure behavior.  
 
   The case for the ductility measure at n = 1 in (34) is completely 
unacceptable and it is discarded.  This leaves the n = 2 case of (34) 
as 
 

 D* = ν *( )2   (46) 
 
and as being the most likely measure of ductility in terms of the 
renormalized Poisson’s ratio ν*.  This measure of ductility in 
uniaxial tension is still provisional at this juncture, pending 
verification with explicit materials comparisons.  The comparisons 
will be conducted shortly. 
 
   The significant values for D*, ν*, and ν from (46) and (28) are 
shown in Table 1.  The ductile brittle transition at D* = 1/2 has 
already been discussed.  Also shown are the values at D* = 1/4.  



For lack of a better term this is called a special case because it does 
appear to have some physical significance.  Very few materials 
have Poisson’s ratios of less than 1/5.  The coefficient of the 
dilatational term in (24) is half way between its maximum and 
minimum values of 1 and 0 at this value of Poisson’s ratio. 
 
 

 Ductility 
D*=(ν*)2 

 
ν* 

 
ν 

Totally Brittle 0 0 0 

Special Case 1/4 1/2 1/5 

D/B Transition 1/2 0.71 0.31 

 3/4 0.87 0.41 

Perfectly Ductile 1 1 1/2 

 
Table 1, Ductility D*, (46) 

 
 
   It is possible to determine E* and ν* other than from experiments 
directly on E and ν.  From (18) it follows that 
 
 E* = 2µ   (47) 
 
and 
 



 ν * = 1− 2µ
3k

  (48) 

 
In most cases it is probably far easier to use (11) and (15) directly.  
However, relation (47) does incisively show that E* is proportional 
to the distortional source of resistance while in (48), ν* involves the 
interplay between the two independent physical effects, 
distortional and dilatational resistances to deformation. Relations 
(47) and (48) should be compared with the complex classical forms 
relating these four properties. 
 
   The comparison of ductility levels predicted by (46) with actual 
materials is given next as a critical test of the result (46).  Table 2 
shows a list of the solids forming common elements from the 
Periodic Table.  The Poisson’s ratios are from the sources 
referenced in [1].  The prediction of ductility levels in the last 
column of Table 2 is in accordance with general understanding of 
the spread of brittle to ductile behaviors for the different materials 
types.  The ductile brittle transition of (43) and (45) occurs at the 
elements of nickel and cobalt which also is in reasonable accord 
with practice.  This ductile brittle transition is not a transition in 
the thermodynamic sense of the term.  But it is a meaningful 
transition as the division between predominately brittle versus 
predominately ductile groupings. 
  



Element ν Ductility 
D*=(ν*)2 

Absolute Limit, Perfect Ductility 1/2 1 
Gold 0.44 0.84 
Lead 0.44 0.84 
Niobium 0.40 0.73 
Palladium 0.39 0.71 
Platinum 0.38 0.68 
Silver 0.37 0.66 
Vanadium 0.37 0.66 
Tin 0.36 0.63 
Aluminum 0.35 0.60 
Copper 0.34 0.58 
Tantalum 0.34 0.58 
Titanium 0.32 0.53 
Nickel 0.31 0.50 
Cobalt 0.31 0.50 
Magnesium 0.29 0.45 
Iron 0.29 0.45 
Tungsten 0.28 0.43 
Zinc 0.25 0.36 
Manganese 0.23 0.31 
Uranium 0.23 0.31 
Silicon 0.22 0.29 
Plutonium 0.21 0.27 
Chromium 0.21 0.27 
Carbon (Diamond) 0.20 0.25 
Limit For Most Elements/Materials 1/5 1/4 
Beryllium 0.032 0.01 
Absolute Limit, Total Brittleness 0 0 

 
Table 2,  Ductility of the solids forming elements 

 



   Even though Poisson’s ratio is difficult to determine with high 
accuracy, the overall results of Table 2 establish the validity of 
using renormalized Poisson’s ratio in (46) as a characterization of 
the ductility in uniaxial tension.  It should be noted that the results 
in Table 2 are identical to the results found from a nanoscale 
analysis in [1]. 
 
  The nanoscale analysis just mentioned was based upon 
differentiating the effects of bond stretching versus bond bending.  
The ductile end of the scale has no bond bending resistance 
compared with the bond stretching resistance.  The brittle end of 
the scale maximizes the bond bending resistance relative to the 
bond stretching resistance.  The present analysis has the ductile 
end of the scale as having no dilatational energy in (35) at ν*= 1.  
The brittle end of the scale has the dilatational energy in (35) as 
maximized at ν*= 0.  These macroscopic scale explanations and 
understandings of behavior are completely compatible with the 
nanoscale explanations and understandings. 
 
   The nanoscale analysis in [1] also served the important purpose 
of proving that the physically unrealistic range of bond bending 
relative to bond stretching resistance disallows negative values of 
Poisson’s ratio.  Finally, it must be emphasized that the relation 
between Poisson’s ratio and ductility has notable exceptions and its 
use here is mainly for studying fundamental effects rather than for 
general utility.  In such exceptions, other physical effects are 
tailored to intercede, as with steel versus iron. 
 
   When interests are in a comprehensive treatment of ductile brittle 
matters, the account in Ref. [1] should be followed where the 
failure number, Fn, is derived and defined to specify the ductility 
level for any state of stress.  The purpose here was entirely 
different.  It was to establish the foundation of the new failure 
theory by carefully examining the connection between elasticity 



theory and failure theory.  The ductility characterization for 
uniaxial tension was shown to be the strong and supporting linkage 
between the two theories.  From a failure point of view, it would 
be appropriate to say that this new development provided not just 
the coupling between the two theories but the integration into and 
unification of failure theory with elasticity theory. 
 
Failure Mechanics Relationships and Significance   
 
   The term failure mechanics is here taken to cover and embrace 
failure theory for homogeneous and isotropic materials with all of 
its associations and all its implications and applications.  It is the 
latest and perhaps the last in a long line of mechanics related and 
formulated disciplines.   
 
   It all began with the monumental and almost unthinkably 
difficult creation of classical mechanics by Isaac Newton.  Then 
over about the following two centuries the disciplines of solid 
mechanics and fluid mechanics came into being and useful forms 
gradually evolved through the dedicated and inspired efforts of 
such great scientists as Cauchy , Bernoulli(s), Euler, Navier, 
Lame′, Poisson, Stokes and many, many others. 
 
   The dominant mechanics achievements of the 20th century were 
the two disciplines of quantum mechanics and fracture mechanics.  
It is pointless to try to directly compare them because one is at the 
atomic scale and the other at the macroscopic scale.  Both became 
vitally important. 
 
   In quantum mechanics the problem was to understand the 
behavior of the electrons orbiting the atomic nucleus under their 
opposite charges.  Were the electrons best viewed as being 
particles or as waves?  The evidence was contradictory.  Then the 
possibility emerged that the behaviors were not deterministic but 
rather must be seen as probabilistic.  That possibility was then 



enlarged to more general concepts of the uncertainty of 
predictability.  The complexity of the behaviors were enfolded and 
enshrouded in the full and glorious complications of three-
dimensional interactions.   
 
   Over a prolonged and frenzied period of activities in the 1920’s 
Bohr and Heisenberg and Dirac and Schrodinger and Born and 
others sorted through, debated and argued all the possibilities.  The 
community ultimately reached a conclusion, something of an 
amalgam of all of the above.  The almost unsolvable complexity of 
the quantum mechanics problem was at least partially due to its 
three dimensional nature.  It was almost but not quite unsolvable.  
There finally was a workable resolution to the problem and it has 
carried forward and endured. 
 
   Fracture mechanics, like quantum mechanics, evolved and 
progressed through various stages in its development.  Griffith [2] 
originated it and conceived the crack growth problem as an energy 
balance between the release of elastic strain energy against the 
work to create new crack surface.  Irwin [3] had the insight to 
characterize the failure inception as related to the nature of the 
elastic singularity at the crack tip.  This offered a normalizing and 
comparative capability.  Rice [4] effected a further breakthrough 
by relating crack tip conditions to the properties of an invariant 
contour integral enclosing the crack.  Barenblatt [5] re-examined 
crack tip conditions and found the non-singular stress state that 
helped to explain much of the behavior.   
 
   All of these efforts in combination formed the discipline of 
fracture mechanics.  It has become enormously successful in 
design applications where materials are made into load bearing 
structures containing a single worst flaw (or flaws) that could be 
idealized as a crack (or cracks).  Although fracture mechanics can 
be formulated in some special three-dimensional cases, its 
fundamental and wide ranging applicability is of a two-



dimensional nature and type.  The success of fracture mechanics 
proved that the general subject of failure characterization no longer 
need be relegated to the state of just being an undisciplined 
agglomeration of empirical formulas. 
 
   Perhaps the final and completing mechanics related discipline 
will be that of the failure mechanics needed to characterize the 
three-dimensional failure behavior of homogeneous and isotropic 
materials.  The fact that it is coming into existence only now was 
not for lack of effort over the years and over the centuries.  Its 
great difficulty of development comes from the same source as that 
for quantum mechanics, namely its fully three dimensional nature 
having extremely complex interactions.   
 
   It is highly unlikely that failure mechanics, as envisioned here, 
could have been developed before the advent of fracture 
mechanics.  Part of this is no doubt due to the clean and clear two-
dimensional nature of fracture mechanics compared with the much 
greater complexity of general failure in three dimensions.  Also, 
for the failure of homogeneous materials, there is no guiding 
certainty as to the site of failure initiation, as occurs with the pre-
existing, stress concentrating cracks in fracture mechanics.  
Fracture mechanics had to lead the way for progress on failure.  So 
the emergence of failure mechanics at this latter time has a 
reasonable coordination with the order and sequence of 
development of the other mechanics related disciplines. 
 
   There is no need to summarize the derivation and capability of 
failure mechanics.  That is comprehensively treated in Ref. [1] 
under the heading of failure theory.  The special interpretation 
developed herein however merits particular attention.  Elasticity 
theory and failure theory for homogeneous and isotropic materials 
are not absolutely independent constructs.  One without the other is 
incomplete.  Although there is no single parameter that appears in 
both theories and bridges between them, there nevertheless is a 



more subtle but no less effective coordination or coupling between 
them. 
 
   To explain this coupling between the two theories it is important 
and even necessary to recognize that any failure theory that does 
not fully treat ductile versus brittle failure conditions is not 
complete.  Even more serious, such an incomplete failure theory 
cannot be assessed and evaluated, its status must be uncertain, even 
of doubtful validity until proven otherwise.  The failure theory 
developed in [1] has the strengths ratio T/C and the stress states as 
determining the ductile versus brittle behaviors.  More specifically, 
for the most important special case of uniaxial tension, the ratio 
T/C itself directly delineates the degree of ductility over the range 
from 0 to 1. 
 
   In the case of linear elasticity theory, the work here has shown 
that renormalized Poisson’s ratio, ν*, also gives a direct measure of 
the degree of ductility for uniaxial tension.  This occurs through 
(46) over the same range of 0 to 1 as that for T/C. 
 
   It is thus the ductility measures from both the failure theory and 
from elasticity theory that provides the bridge between the two 
theories.  At first it is exceedingly surprising that elasticity theory 
could say anything at all about the ductility in failure.  But on 
deeper reflection it is not so surprising.  The atomic scale 
characteristics of bond stretching and bond bending directly 
determine and differentiate not only T and C but also ν.   Poisson’s 
ratio, ν, actually contains a great deal of information that has 
heretofore been ignored or vastly under-appreciated. 
 
   Poisson’s ratio, ν, is not at all secondary to the elastic modulus, 
E, it is the full and equal partner to E and of great significance in 
its own right.  This new and enlarging insight became fairly 
apparent when the renormalized theory of elasticity was obtained 



with the renormalized Poisson’s ratio.  Contrast this with the 
classical form of elasticity theory, usually using the two Lame′ 
constants λ and µ.  The λ property has no physical interpretation at 
all.  E and ν or better yet their renormalized forms E* and ν* 
represent the most meaningful statements of elastic properties, 
even with direct implications for failure. In association with E*   
and ν*, the uniaxial strengths T and C turn out to give the most 
meaningful and useful calibrating anchors for failure theory. 
 
   It is the failure theory of Ref. [1] (and herein) in its broadest 
context that comprises the discipline of failure mechanics.  The 
comparison of failure mechanics (for solids) with fluid mechanics 
and with quantum mechanics is both illuminating and technically 
useful.  In fluid mechanics and for slow flows, the Navier-Stokes 
equations give a linear behavior between the shear stress and the 
velocity gradient.  But as the velocities increase, the nonlinear 
effect of the inertial source invalidates the previous linear relations 
and leads to turbulence.   
 
   For failure mechanics a similar situation evolves.  Small 
deformation states produce linear relationships among the field 
variables of elasticity theory.  But the nonlinear intercession of 
failure theory invalidates the previous conservative, linear 
behaviors.  Nonlinear intercessions provide the limits to the linear 
behaviors of both solids and fluids.  Elasticity theory without 
failure theory is open ended and incomplete.  They must go 
together to provide closure. 
 
   The comparison between failure mechanics and quantum 
mechanics of course does not contain any analogies or 
congruencies between them.  But both do share an overriding 
common characteristic that had much to do with their histories of 
development.  Perhaps this would be better described as the 
common barriers that greatly impeded their respective 



developments.  The commonality is simply this.  Neither of these 
two mechanics disciplines yielded to the standard and ordinary 
expectations.  Both solutions turned out to be strongly counter-
intuitive and it took major expenditures of time and effort to 
ultimately synthesize them, one over a highly intensive time period 
and the other over an agonizingly long and drawn out time 
extension.   
 
   It was well worth the extreme efforts in order to gain both 
disciplines.  More broadly, all six of these mechanics related 
disciplines: classical mechanics, solid mechanics, fluid mechanics, 
quantum mechanics, fracture mechanics, and failure mechanics, 
comprise irreplaceable repositories of the most basic 
scientific/mechanistic knowledge.  
 
References 
 

1. Christensen, R. M. (2013), The Theory of Materials Failure, 
Oxford University Press, Oxford, U. K. 
 

2. Griffith, A. A. (1921), “The Phenomena of Rupture and 
Flow in Solids”, Trans. Royal Society of London, A221, 
163-197. 

 
3. Irwin, G. R. (1957), Analysis of Stresses and Strains Near 

the End of a Crack Traversing a Plate,” Journal of Applied 
Mechanics, 24, 361-364. 

 

4. Rice, J. R. (1968), “A Path Independent Integral and the 
Approximate Analysis of Strain Concentration by Notches 
and Cracks,” Journal of Applied Mechanics, 35, 379-386. 

 



5. Barenblatt, G. I. (1962), “The Mathematical Theory of 
Equilibrium of Cracks in Brittle Fracture,” Advances in 
Applied Mechanics, 7, 55-129. 

       

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Richard M. Christensen 

March 9th, 2014 

 
Copyright © 2014 Richard M. Christensen 


