
XIX. EVALUATION OF DUCTILE/BRITTLE FAILURE THEORY, 
DERIVATION OF THE DUCTILE/BRITTLE TRANSITION 
TEMPERATURE 

 
 
Introduction 
 
 The ductile/brittle transition for failure with all of its implications and 
ramifications is one of the most widely observed and universally 
acknowledged physical effects in existence.  Paradoxically though it also is 
one of the least understood of all the physical properties and physical effects 
that are encountered in the world of materials applications.  Critical 
judgments are made on the basis of experience only, purely heuristic and 
intuitive.  The resolution of the ductile/brittle transition into a physically 
meaningful and useful mathematical form has always been problematic and 
elusive.  It often has been suggested that such a development is highly 
unlikely.  The rigorous answer to this question remains and continues as one 
of the great scientific uncertainties, challenges. 
 
 The long time operational status of ductile/brittle behavior has 
reduced to a statement of the strain at failure in uniaxial tension.  If the strain 
at failure is large, the material is said to be ductile.  If the strain at failure is 
small, it is brittle.  Loose and uncertain though this is, it could be general, 
even complete, if the world were one-dimensional.  But the physical world is 
three-dimensional and in stress space it is six or nine dimensional.  Even 
more complicating, some of the stress components are algebraic.  So the 
problem is large and difficult, perhaps immensely large and immensely 
difficult. 
 
 To even begin to grapple with the ductile/brittle transition one must 
first have a firm grasp on a general and basic theory of failure.  On further 
consideration, the two topics are seen to be inseparable.  Any theory of 
failure that does not admit a full development of ductile versus brittle 
behavior is less than just incomplete.  It likely is irrelevant and incorrect if it 
does not include the adjoining ductile/brittle delineation.  In fact, this could 
be the number one test for the credibility of any particular failure criterion, 
does it admit a related and reasonable associated ductile/ brittle 
formalization? 
 
 There is one exception to this quite dire state of affairs and it is the 
case of what are commonly called very ductile metals.  The flow of 
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dislocations embodies the essence of ductility and it has been a very active 
area of study for a great many years.  The related many papers on the 
ductile/brittle transition in ductile metals generally examines the emission of 
dislocations at crack tips to see how local conditions can influence this.  The 
most prominent piece of work is that of Rice and Thomson [1].  Further 
references in the particular field of dislocations and the ductile/brittle 
transition will be given later. 
 
 The direction to be followed here however is totally different from 
that mentioned above because all materials types are to be considered here, 
not just ductile metals.  Of course there could be an argument to the effect 
that attention must be restricted to a single materials type. But a counter-
argument is that there is not one theory of elasticity for metals while a 
different theory of elasticity is needed for ceramics, etc.  Failure theory and 
the ductile/brittle transition in its relationship to failure can be treated in a 
unified and general manner, just as elasticity theory can.  The 
comprehensive failure theory derived by Christensen [2] integrates the 
failure approach with full account of the ductile/brittle transition.  The 
failure theory is that for any and all isotropic materials and the ductile/brittle 
transition treatment applies to any isotropic materials type in any state of 
stress, not just ductile metals in uniaxial tension. 
 
 In Christensen [2] the theory of failure was evaluated by comparison 
with cases of highly recognized failure data, such as  that of Taylor and 
Quinney [3].  The associated ductile/brittle theory was fully developed in [2] 
but it was not evaluated by detailed comparison with testing data because of 
the scarcity of such quality data.  In this work the major area of the 
evaluation of the ductile/brittle part of the general theory in [2] will be taken 
up.  This further and final development of the ductile/brittle transition theory 
will be evaluated in much detail and considerable depth.  This will be 
approached and treated after first outlining the overall ductile/brittle failure 
theory in the next section. 
 
 Following the evaluation section the failure treatment will be 
generalized to non-isothermal conditions by deriving the related 
ductile/brittle transition temperature.  The ductile/brittle transition 
temperature is yet another aspect of failure that although supremely 
important, has defied organized applicable theoretical development for 
general materials types, not just for specific types of metals.  It too remains 
as one of the major outstanding problems, approachable mainly on an 
empirical basis from testing results.  
 



 Probably no major field has had more effort expended by more people 
with less to show for it than has this one of materials failure.  Under high 
load conditions failure is inevitable.  In simple, descriptive terms ductile 
failure is gradual, graceful, progressive failure but brittle failure can be a 
sudden, abrupt and sometimes catastrophic event.  The differences could not 
be more profound and consequential.  What is more, ductile versus brittle 
failure is not an on/off switch.  There is a measured shift from one to the 
other just as there is with the glass transition temperature in polymers.  A 
rational treatment and methodology for materials failure will be given and 
substantiated here, starting next. 
 
 The final section will comprise an overview of and the conclusion of 
the present extended materials failure program.  
 
 
The Ductile/Brittle Failure Theory 
 
 The failure theory is fully developed in Ref. [2].  For the background, 
motivation, derivation and interpretation that reference should be consulted.  
It is important to see all of these developments, especially the derivation.  
None of the controlling forms are empirical postulations, as is the usual 
approach.  The theory itself will only be outlined here in terms of its 
essential elements so that it can be evaluated. 
 
 There are two separate and competitive failure criteria, the polynomial 
invariants criterion and the fracture criterion.  These are stated below.  The 
overall failure theory applies over the full range of materials having 
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where T and C are the uniaxial tensile and compressive strengths.  The 
theory applies to all full density, homogeneous and isotropic materials, the 
basic materials of load bearing structures. 
 
Polynomial Invariants Failure Criterion 
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where sij is the deviatoric stress tensor.  The stress is nondimensionalized by 
the uniaxial compressive failure stress as 
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In principal stress space the polynomial invariants criterion takes the form 
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 A second failure criterion is needed in a certain range of T/C values 
that tends more toward the generally brittle types of materials.  This failure 
criterion commences at T/C = 1/2, at which value the polynomial invariants 
criterion has certain special properties that coordinate with the fracture 
criterion to be stated next.  This second and competitive criterion is that of 
the fracture behavior and it is stated in terms of principal stresses as: 
 
Fracture Criterion 
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Thus the fracture criterion only applies over the partial range of T/C values 
from 0 to 1/2. 
 
 Whichever failure criterion (2) or (5) specifies the more limiting 
failure stress values then that applies and controls the failure behavior. 
 
 This nondimensional failure theory is remarkably simple having only 
one parameter to be varied, that of the T/C value.  In the nondimensional 
specification (3) the compressive failure stress C must be used.  Trying to 
effect nondimensionalization by using T would become degenerate. 



 
The value of T/C is taken as the materials type.  The usual classes of 

materials can have overlapping T/C values.  The polynomial invariants 
criterion forms a paraboloid in principal stress space.  Its axis makes equal 
angles with the principal stress coordinate axes.  The fracture criterion, when 
it applies, specifies planes normal to the principal stress axes, and these 
planes take cuts or slices out of the paraboloid.  The paraboloid remains a 
paraboloid but with three flattened surfaces on it.  The limiting case of the 
failure theory at T/C = 1 reduces to the Mises criterion. 
 

Two simple but basic examples from these failure criteria will now be 
given.  The first is that of the shear strength, S. 
 
Shear Strength 
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, Ŝ = T

C
S = T   (7) 

 
The form (6) is required by the polynomial invariants criterion and the form 
(7) by the fracture criterion. 
 
 The second example is that of eqi-biaxial stress failure. 
 
Eqi-Biaxial Failure Stress 
 
Let 
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The polynomial invariants criterion gives 
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The fracture criterion does not give any failure levels more critical than that 
of the polynomial invariants result in (9). 
 



The Ductile/Brittle Transition 
 
 The additional capability of ductile versus brittle failure 
discrimination will now be brought into the failure theory framework.  To be 
able to theoretically distinguish ductile failure from brittle failure would 
provide a large amplification in the power and usefulness of failure criteria.  
The failure theory of Ref. [2] did in fact include total coordination with the 
ductile/brittle transition.  The failure criteria part of the general failure 
theory (1)-(5) was fully evaluated in Ref. [2].  The main purpose of this 
paper is to evaluate the ductile/brittle characterization part of the general 
failure theory.  This latter evaluation contained here will support and 
reinforce the entire failure theory. 
 
 For use with ductile/brittle considerations let 
 

σ ij
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designate the failure stresses from (1)–(5).  The associated ductile/brittle 
transition is specified by 
 
 σ̂ ii
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One of the uses of (10) will be to establish the value of T/C that places the 
material failure directly at the ductile/brittle transition for a specified stress 
state. 
 
 For materials and failure stress states not right at the ductile/brittle 
transition, the ductile versus brittle states of failure are specified by 
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Ductile/Brittle Transition for Uniaxial Stress 
 
 Two simple but again basic examples of the use of these ductile/brittle 
criteria will now be given.  First for uniaxial tension there follows that 
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Substituting (14) into (10) gives 
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D / B transition in uniaxial tension   (15) 

 
 Similarly for uniaxial compression there is 
 
 σ̂ ii

f = −1  (16) 
 
Substituting this into (10) gives 
 
 T

C
= 0 D / B transition in uniaxial compression   (17) 

 
The two results (15) and (17) will be used later in the evaluation. 
 
 The unexpected thing in all this development is that the ductile/brittle 
transition is specified by only the T/C materials type value.  No empirical 
parameters are involved or needed.  The ductile/brittle transition is 
represented by the particular plane (10) in the principal stress space that is 
normal to the axis of the polynomial invariants paraboloid.  This plane 
divides the entire region into the ductile region versus the brittle region.  It 
applies to regions controlled by either the polynomial invariants criterion or 
the fracture criterion. 
 
 The first term in the polynomial invariants criterion (2) is the first 
invariant of the stress tensor.  The second term in (2) is the second invariant.  
The second term without the first term in (2) would be the usual ductile 
metals failure criterion based only upon distortional effects.  It is the first 
term in (2) that brings in the ductile versus brittle effects.  And it is not 
surprising that this first term in the failure criterion (2) is also the controlling 
form in the ductile/brittle transition specification (10).  This first invariant of 



the stress tensor provides the “thermostat” that controls all the ductile/brittle 
characteristics, as well as many other things.  This is the first clear and 
unmistakable indicator that this ductile versus brittle failure discrimination 
approach may be on the right track.  The evaluation will push and probe  
much further. 
 
 Before turning to the next section on evaluation, a special 
characteristic of this ductile/brittle failure theory should be noted.  The 
theory is completely characterized by only two failure properties, T and C.  
Conventional thinking says that a general failure theory should require 3 or 4 
parameters at least, if it even can be done at all.  As studied and proved in 
Ref. [4] materials failure represents the cessation of the linear elastic range 
of behavior, which itself is also composed by only two properties for 
isotropy.  The relationship and balance between elasticity theory and failure 
theory is a remarkable, physical tie that has remained hidden for so long but 
now can finally be recognized and exploited to great advantage [4]. 
 
 
Evaluation of Ductile/Brittle Failure Theory 
 

A significant part of this new failure theory was successfully 
evaluated in Ref. [2] using the very best available data on explicit failure 
cases performed in the laboratory under carefully controlled conditions.  
Virtually all of the previous evaluation was independent of ductile versus 
brittle failure considerations.  Now the attention is exclusively placed upon 
the ductile versus the brittle aspects of failure and how to test and verify the 
theoretical predictions for such ductile/brittle behaviors.  This present 
evaluation will be even more demanding and intensive. 

 
Critical quality ductile/brittle testing data comparable to that 

mentioned above does not appear to exist.  An alternative approach to 
evaluating the ductile/brittle theory must be found and used.  This will be 
accomplished through physical tests of the necessary consistency and 
compatibility of the ductile/brittle theory predictions. 

 
First, a general picture of the full range of possible ductile/brittle 

behaviors will be constructed from the theory in the preceding section.  
Table 1 shows the values of T/C that specifies the occurrence of the 
ductile/brittle transition from (10) for the seven most basic stress states.  The 
full results in Table 1 are from (10)-(12) with typical results derived in (15) 
and (17) as  the specific examples for uniaxial tension and compression. 
 



Stress State T/C at D/B Transition 

Eqi-Triaxial Compression No Failure 

Eqi-Biaxial Compression Always Ductile 

Uniaxial Compression T/C = 0 Otherwise Ductile 

Shear T/C = 1/3 

Uniaxial Tension T/C = 1/2 

Eqi-Biaxial Tension T/C = 1 Otherwise Brittle 

Eqi-Triaxial Tension Always Brittle 

 
Table 1   The range of D/B transition behaviors 

 
 
It is seen from Table 1 that there is a shift toward the benign condition of 
ductile failure for the compressive stress states.  In contrast, the tensile states 
are much inclined toward the difficult occurrence of brittleness.  While this 
does not explicitly prove or verify anything specific, it still is an eminently 
reasonable and rational general prediction of ductile/brittle behavior.  
However, it will require much more specific and even critical conditions to 
accomplish the solid verification that is sought here.  This will now be 
pursued through physical consistency tests. 
 
Consistency Test 1: The Ductile/Brittle Transition in Uniaxial Tension 
 
 The time honored most important stress state is that of uniaxial 
tension.  It is universally employed to determine the properties of stiffness 
and strength.  This will now be used to test the theoretical prediction of 
where the ductile/brittle transition is located for uniaxial tension, compared 
with real world experience. 
 
 Table 2 shows typical values of the T/C properties ratio for a very 
broad range of materials.  In some cases a particular materials class has a 



broad range of T/C values, typical values are shown here.  For example for 
polystyrene the T/C = 1/2 is that for untoughened forms of that particular 
polymer.  This value of T/C = 1/2 is also about that for PMMA. 
 
 

Materials Type T/C Predicted D/B Behavior 
in Uniaxial Tension 

Aluminum 1 Perfectly Ductile 

Titanium 1 Perfectly Ductile 

Steel 1 Perfectly Ductile 

Polycarbonate 4/5 Very Ductile 

Epoxy 2/3  Ductile 

Polystyrene 1/2 D/B Transition 

Iron 1/3 Brittle 

Silicon Carbide 1/5 Very Brittle 

Float Glass 1/10 Extremely Brittle 

Dolomite 1/15 Extremely Brittle 

Some Geological 
Materials 1/50 to 1/100 Totally Brittle 

 
Table 2   The full range of isotropic materials with the D/B transition being 

at T/C = 1/2 
 

The uniaxial tensile ductile/brittle behaviors shown in Table 2 are 
those from the ductile/brittle transition prediction (10) and the related ranges 
(11) and (12).  For example for epoxy the behavior is simply stated as being 
ductile at T/C = 2/3 since that value is closer to the ductile/brittle transition 
at T/C = 1/2 than it is to the perfectly ductile case at T/C = 1.  The ceramic 
case is a silicon carbide or similar material. 
 



The most significant entry in Table 2 is that of the theoretically 
predicted existence of the ductile/brittle transition at T/C = 1/2 for simple 
tension.  This prediction is in complete agreement and accordance with all 
intuitive, heuristic observations for the different materials types.  That the 
ductile/brittle transition at T/C = 1/2 is bracketed by ductile epoxy at        
T/C = 2/3 and brittle cast iron at T/C = 1/3 is especially supportive.  

 
The composition of a table similar to that of Table 2 but for the solids 

forming elements of the Periodic Table gives completely similar and 
coordinating results.  Gold, silver and lead are near the ductile limit while 
silicon, carbon (diamond), and beryllium are near the brittle limit.  Although 
the data are scattered, nickel and cobalt appear to be at or near the 
ductile/brittle transition of T/C = 1/2. 

 
There could not be a stronger verification of this failure theory than 

through the failure behavior in the uniaxial tensile failure perspective for all 
isotropic materials as in Table 2.  This ductile/brittle transition prediction is 
consistent with the accumulated wisdom of use and experience for all 
materials over the whole span of technical history.  
 
 The success in predicting the ductile/brittle transition in uniaxial 
tension lead to the enlargement of the method in Ref. [2].  Specifically the 
failure number Fn was generated to predict the quantitative ductility level for 
any material in any state of stress.  The failure number is defined by 
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with 
 
 0 ≤ Fn ≤1  (19) 
 
When Fn in (18) generates a value larger than 1 it reverts to 1 and when it 
generates a value less than 0 it reverts to 0.  From (18) Fn = T/C for uniaxial 
tension, the same as displayed in Table 2.  The resulting values of Fn for any 
material in any stress state then admits direct comparison with the range of 
materials in Table 2 for uniaxial tension to give an interpretation of the 
ductility level.  See Ref. [2] for the derivation and general interpretation of 
(18).  A complete failure number methodology is built up and based upon 
the significance of the results in Table 2.  This is a further proof of the utility 
and versatility of the ductile/brittle failure theory.  



 
Consistency Test 2: Simple Shear Ductile/Brittle Behavior 
 
 If at the beginning of examining materials failure one were to 
speculate, a logical related question might be: which stress state is the most 
fundamental for characterizing failure, uniaxial tension or shear?  This 
intriguing question is not which test is easiest to perform but which stress 
state is the most fundamental for failure.  Probably more investigators would 
opt for the choice of shear.  The present failure theory establishes the 
opposite conclusion.  Uniaxial tension is the most fundamental stress state 
but shear stress failure is definitely of great importance.  It will be examined 
now. 
 
 From Table 1 it is seen that uniaxial tension and shear are the only 
two simple stress state cases with the ductile/brittle transition occurring 
inside the limits of T/C of 0 and 1.  Unfortunately there is not the kind of 
information and experience with shear failure to arrange a table for the case 
of shear like that of Table 2 for uniaxial tension.  Still it is possible to make 
an evaluation on the shear stress failure prediction. 
 
 First, view shear stress as the two stresses of orthogonal tension and 
compression of equal magnitudes.  In so far as ductile versus brittle behavior 
is concerned the compressive stress component has an ameliorating effect 
upon the tensile stress component behavior.  Thus the shear stress state can 
be expected to tolerate a ductile/brittle transition down to a lower value of 
T/C than can uniaxial tension.  Table 1 verifies this effect through the T/C = 
1/3 prediction for shear versus T/C = 1/2 for uniaxial tension at the ductile 
brittle transition. 
 
 It is further helpful to show the behavior of the shear strength S versus 
T/C over its full range of values.  The solution for S is given by (6) and (7).  
The complete behavior is shown in Fig. 1.  The ductile range versus the 
brittle range for shear stress comes from (10)-(12). 
 



 
Fig. 1   Shear stress failure form 

 
 

The change of failure mode occurs at T/C = 1/3, the same as the 
change from ductile to brittle behavior.  If it were not for the fracture 
criterion with its brittle behavior in Fig. 1 the behavior for S versus T would 
be very different.  S would become unbounded compared with T as T/C→0.  
This would comprise physically unrealistic behavior for shear stress at the 
brittle limit.  Both T and S must go to zero together as T/C→0. 

 
The mention of the brittle limit brings up consistency test number 3. 

 
Consistency Test 3: The Brittle Limit  
 
 There must exist a well posed physical limit called the brittle limit at 
T/C = 0.  This would complement the ductile limit at T/C = 1 which is the 
Mises criterion.  The two limits would then assure a complete treatment of 
all isotropic materials failure cases. 
 



 The brittle limit may not be easily accessible as an experimental and 
realizable case, but it must exist as a legitimate and consistent limit in the 
theoretical construct of the overall ductile/brittle failure theory. 
 
 Examination of the polynomial invariants failure criterion and the 
fracture criterion, (1)-(5), shows that they remain well posed and physically 
meaningful as T/C→0.  The three dimensional form of the brittle limit is as 
shown in Fig. 2.  Also shown is the ductile/brittle transition from (10)-(12).  
Even in the brittle limit, ductile behavior still remains possible so long as a 
sufficiently large component of hydrostatic pressure is present. 

 

 
 

Fig. 2   The brittle limit 
 
 

This is the only failure theory that admits a realistic brittle limit.  The 
historic Mohr-Coulomb failure theory becomes degenerate as T/C→0.  The 
existence of the brittle limit provides a very strong support for the general 
ductile/brittle failure theory. 
 
Consistency Test 4: The Ductile Limit 
 

Next some complex stress states will be considered.  Four starting 
cases will be considered, those of uniaxial tension and compression, shear 
and eqi-biaxial tension.  These four cases are the cases in Table 1 at or 
within the limits of T/C = 0,1.  But each of these will be superimposed upon 
a hydrostatic state of stress.  The posed problem is to determine in each of 
the four cases how much hydrostatic stress must be superimposed to bring a 



ductile limit, perfect T/C = 1 material to its ductile/brittle transition.  Thus 
each of the four cases is in a rather complex three-dimensional state of 
stress.  This is the first ductile limit consistency test.  There will be more. 

 
The hydrostatic stress state has no effect on the failure stress level 

since this is a perfectly ductile T/C = 1 (Mises) material.  But the 
superimposed hydrostatic stress state has a profound effect upon the ductile 
versus brittle nature of the failure. 

 
The ductile/brittle transition (10) for a T/C = 1 material becomes 
 

 σ̂ ii
f = 2 D / B transition at T

C
= 1  (20) 

 
Illustrate the method for the special case of uniaxial tension.  It 

follows that 
 

 σ̂ ii
f = T

C
+ 3σ̂ h   (21) 

 
where σ h  is the hydrostatic stress (tensile or compressive).  But for this 
material case with T = C (21) becomes 
 
 σ̂ ii

f = 1+ 3σ̂ h   (22) 
 
Substituting (22) into (20) gives the result 
 
 σ h =

T
3

  (23) 

 
So this is the hydrostatic stress needed to bring the T/C = 1 material in 
uniaxial tension to its ductile/brittle transition. 
 
 The other three cases follow similarly and all results are as shown in 
Table 3. 
 

Case Stress State σ h  

1 Eqi-biaxial tension 0 



2 Uniaxial tension T/3 

3 Shear 2T/3 

4 Uniaxial compression T 

 
Table 3   Hydrostatic stress needed to bring a T/C = 1 ductile limit material 

to its D/B transition 
 
 
 Now examine Case 4 in Table 3, that of uniaxial compression. 
 

 
σ 1 = −C +T = 0
σ 2 = 0 +T = T
σ 3 = 0 +T = T

  (24) 

 
It is seen that at the superimposed hydrostatic stress necessary to bring 
uniaxial compression to the ductile/brittle transition, it becomes identical to 
the eqi-biaxial tension case, which is already at the ductile/brittle transition 
with no superimposed hydrostatic stress needed. 
 
 This behavior passes the consistency test because the ductile/brittle 
transition equation, (10), shows that Case 1 and Case 4 are both at the 
ductile/brittle transition, which they must be since they have identical stress 
states.  Any other ductile/brittle transition form would not have given this 
result.  These four cases form a closed loop of cases, not an open sequence 
of cases. 
 
Consistency Test 5: Ductile/Brittle Transitions in 2-D 
 

There is much insight and understanding to be gained by examining 
two dimensional plane stress failure envelopes as they progress from the 
brittle limit to the ductile limit.  It is especially important to indicate and 
assess the exact position of the ductile/brittle transition in each particular 
case.  The ductile/brittle planes (lines in 2-D) must show a decisive and 
consistent pattern of change as the materials type changes.  Five cases will 
be given, those for T/C = 0, 1/3, 1/2, 2/3, and 1.  These five materials cases 
are shown in Fig. 3.  All of the graphics are computer generated from the 
ductile/brittle failure theory, no schematic renderings are involved. 
 



  
 

  

          
 

 
Fig. 3   2-D failure envelopes and the D/B transitions 



 
 
 The sequence of the stress states at the ductile/brittle transitions for 
the cases of Fig. 3 are given in Table 4. 
 

T/C Stress State at D/B Transition 

0 Uniaxial compression 

1/3 Shear 

1/2 Uniaxial tension 

2/3 Biaxial tension 

1 Eqi-biaxial tension 

 
Table 4   D/B transitions for the 2-D cases of Fig. 3 

 
 
It is seen that the ductile/brittle transitions in Fig. 3 and Table 4 form a 
logical sequence of stress states going from compressive to ever more tensile 
as the T/C ratio increases. 
 
 The 3-D form of the brittle limit was shown in Fig. 2.  In 2-D plane 
stress it is as given in Fig. 3a.  It is difficult to find reliable data at or near the 
brittle limit although some geological materials have T/C ratios in the range 
of 1/50 to 1/100.  But it is clear that the brittle limit does exist, it is not just a 
vague concept.  The brittle limit is where no tensile stress component can be 
sustained.  This is a fundamental precept.  Fig. 3a does show through the 
position of the ductile/brittle transition that with sufficient hydrostatic 
pressure, even a T/C = 0 material can deform and flow in a ductile manner. 
 
 The T/C = 1/3 case is shown in Fig. 3b.  It is typical for the case of 
cast iron.  The state of shear stress failure is right at the position of the 
ductile/brittle transition.  The failure of specimens of cast iron in torsion 
shows a spiral fracture pattern.  The orientation of the failure pattern is about 
at 45º to the longitudinal axis.  This reveals that the tensile principal stress 
component of the shear stress state controls the failure, consistent with the 
brittle behavior possibility at the ductile/brittle transition. 



 
 It is un-toughened polystyrene and PMMA that are at or near the    
T/C = 1/2 case in Fig. 3c.  These materials are considered to be rather brittle, 
at least within the family of all glassy polymers.  This further suggests that 
the ductile/brittle transition may at least in this case be fairly sharp since the 
state of simple tension is right at the ductile/brittle transition.  For values of 
T/C > 1/2, the ductile/brittle transition exists only in the first quadrant of 
Fig. 3 and that completely changes the nature of failure for most stress 
states. 
 
 The next case is Fig. 3d for T/C = 2/3.  Most aerospace grade epoxies 
have T/C in the range from 0.6 to 0.7 and have significant but not extreme 
ductility, such as occurs with aluminum.  From Fig. 3d and the failure 
criteria (1)-(5) and the ductile/brittle criterion (10)-(12) it can be seen and 
shown that the ductile/brittle transition occurs at the two tensile biaxial stress 
states of 
 
 σ 1 = 2σ 2   
 
and 
 
 σ 2 = 2σ 1   
 
These two stress states in Fig. 3d are quite close to the state of uniaxial 
tension.  This may indicate that the ductile/brittle transition is quite sharp in 
this case. 
 
 The final case in Fig. 3 is that of the perfectly ductile state at T/C = 1.  
This is representative of aluminum and all of the very ductile metals such as 
silver and gold and copper.  At T/C = 1 all materials are universally 
considered to be extremely ductile and Fig. 3e is consistent with that 
behavior.  Much testing has been done in the biaxial stress space of Fig. 3e.  
But the exact condition of eqi-biaxial stress has not been actively studied 
experimentally.  The definitive testing data of Taylor and Quinney [2] is for 
uniaxial tension plus superimposed shear.  This combination does not come 
anywhere close to eqi-biaxial tension.  This situation for the ductile/brittle 
transition in Fig. 3e at eqi-biaxial tension does leave some open questions as 
to its interpretation, it will be taken up further from a 3-D point of view in 
Consistency Test 6. 
 
 These five cases of Fig. 3 are signal parts of the verification process 
for the continuum of failure modes for the full spectrum of materials types.  



They reveal distinctive but realistic features of the relation between ductile 
and brittle failure.  They form a comprehensive account of the ductile/brittle 
failure characteristics as a function of the materials type designation through 
the T/C value. 
 
Consistency Test 6: The Ductile Limit in 3-D 
 

As seen in Fig. 3e a very interesting situation arises as to the 
ductile/brittle interpretation of what is really happening with a perfectly 
ductile T/C = 1 material when placed in a state of eqi-biaxial tension and 
taken to failure. 

 
The cases in Fig. 3 are all in 2-D plane stress states.  To better 

understand the meaning of the ductile/brittle transition in Fig. 3e for T/C = 1 
it is necessary to also view this case in full 3-D perspective.  The T/C = 1 
case is that of the Mises criterion and this is shown in Fig.4 along with the 
ductile/brittle transition designation from (10).  The Mises criterion is shown 
in the usual graphical form found in most mechanics of materials textbooks. 
 

 
 

Fig. 4   The ductile limit at T/C = 1 with the D/B transition 
 
 
 It is of relevance to understand the location of the ductile/brittle 
transition in Fig. 4.  It is determined by the intercepts of the ductile/brittle 
transition plane with the coordinate axes,  which is found to occur at 
σ̂ 1 = σ̂ 2 = σ̂ 3 = 2  from (10). 



 
 There is only one characteristic dimension for the Mises cylinder in 
Fig. 4 and it is that of its radius, r.  One would expect  the distance from the 
coordinate origin to the ductile/brittle transition plane to not only be the 
same order of magnitude as the radius of the Mises cylinder, but further 
expect it to approximately be of the same size.  The comparison is as 
follows.  The distance z to the ductile/brittle transition plane is 
 
 z = 2

3
T = 1.15T   (25) 

 
while that for the radius of the Mises cylinder is 
 

 r = 2
3
T = 0.817T   (26) 

 
 Now with the ductile/brittle plane for a T/C = 1 material located as 
shown in Fig. 3e, all 2-D stress states are ductile except for that at eqi-
biaxial tension which is right at the ductile/brittle transition.  In Fig. 4 for all 
3-D stress states there are an unlimited number of ductile failure stress states 
and an equally unlimited number of brittle failure stress states.  The dividing 
line is at eqi-biaxial tension.  Thus the crucial case needed for physical 
understanding is that of eqi-biaxial tension. 
 
 Is there a realistic means of producing a perfect state of eqi-biaxial 
tension?  The answer is yes, and it is that of thin spherical pressure vessels.  
Such pressure vessels made from steel or titanium fail by brittle fracture 
involved with blowing out a plug or by major fragmentation.  The only 
exception is when failure occurs at the weakening filling valves due to stress 
concentrations. 
 
 A graphic example of such brittle behavior is shown in the website 
www.FailureCriteria.com, Section VI.  The plug was blown out with such 
momentum for the spherical, steel pressure vessel that it crippled the 
supporting structure.  High strength steel and titanium pressure vessels have 
σ 1 =σ 2  and  T/C = 1.  They do not show major plasticity states of 
deformation but they do fail by explosive fragmentation.  The collection of 
examples such as this one shows that the failure of perfectly ductile 
materials can and does occur with brittle behavior, consistent with the 
ductile/brittle predictions in Figs. 3e and 4.  This is yet another fundamental 
corroboration of the general failure theory. 



 
 An interesting conclusion can be reached based upon the 
ductile/brittle behavior at the T/C = 1 end of the spectrum and the scarcity of 
corresponding ductile/brittle information at the other end of the materials 
spectrum.  This conclusion is that it is likely that the ductile/brittle transition 
is more defined and sharper in the T/C > 1/2 range of materials than it is in 
the T/C < 1/2 range. 
 
Consistency Test 7: The Ductile/Brittle Transition Temperature 
 

The purely mechanics based theory discussed up to here admits 
generalization to give rational and reasonable predictions of the 
ductile/brittle transition temperature for the full range of isotropic materials.  
This major development will be fully treated in the next section.  At this 
point it is stated as being another supporting consistency test, the details 
being in the next section. 
 
Conclusions From Consistency Tests 
 

This evaluation started with the ductile/brittle delineation of several of 
the most important stress states in Table 1.  Then using physical consistency 
tests the entire ductile/brittle theory was examined in great detail to obtain 
and illuminate the coordination of all aspects of failure.  The native 
complexity is due to the interaction of all possible materials types acted 
upon by any and all stress states.  Only a truly comprehensive failure theory 
could unravel this convoluted interaction, not just for failure but for ductile 
versus brittle failure.  In addition to seeing the ductile/brittle transition in all 
the most important forms of its existence, it was shown to be equally vital 
and necessary to understand the existence of the ductile limit and the brittle 
limit of materials types. 

 
The stress state of uniaxial tension was shown to provide the key for 

quantifying all ductile versus brittle characteristics for all stress states.  For 
uniaxial tension the measure of the degree of ductility is directly given by 
the materials type inherent T/C ratio.  The full failure theory specifies the 
location of the ductile/brittle transition for any stress state as a function of 
the materials type T/C.  Alternatively the converse is also outlined.  A 
complete and physically consistent account of all these matters was the end 
result. 

 
Another facet of understanding the ductile/brittle behavior is the fact 

that there is a range of failure behavior where for all materials types all 



failure stress states are of ductile type and another range where for all 
materials types all failure stress states produce brittle failure.  From the 
ductile/brittle criteria (10)-(12) and from (1) it follows that for all failure 
stress states satisfying (2)-(5) 
 
 If σ 11

f +σ 22
f +σ 33

f > 2C, Always brittle   
 
and 
 
 If σ 11

f +σ 22
f +σ 33

f < −C, Always ductile   
 
The assurance of ductility requires predominantly compressive stress states 
while the certainty of brittleness is associated with predominately tensile 
stress states.  In between these two ranges of behavior is the third range 
where the real action lies.  In this intermediate range the failure behavior can 
be either ductile or brittle and each separate case must be evaluated 
individually using the full theory. 
 
 When combined with the previous evaluation of the failure theory in 
Ref. [2], this evaluation through consistency tests of the ductile/brittle 
aspects of the failure theory completes the verification and validation of the 
entire failure theory. 
 
 With this completion status for the mechanics based theory, attention 
can now be shifted into non-isothermal conditions in the next and final 
technical section. 
 
 
The Ductile/Brittle Transition Temperature 
 

Up until this point all concerns have been with the purely mechanics 
based theory of ductility.  How should ductility be defined, measured, 
verified, and utilized?  These questions have been posed and answered.  
With some success in that direction there now is support and opportunity to 
venture into non-isothermal conditions.  What will be approached and done 
will be far short of producing a general thermo-mechanical theory of 
ductile/brittle failure behavior.  A more limited but still highly challenging 
effort will be made to extend the preceding mechanical theory into 
predicting the ductile/brittle transition temperatures for all isotropic 
materials. 

 



The term “predicting” needs to be clarified.  The goal is to develop the 
theoretical capability to predict the ductile/brittle transition temperature in 
terms of the relevant thermal and mechanical properties at any given 
ambient state.  The ambient state of the material is set and determined by its 
chemical and physical constitution.  It may be very ductile or very brittle or 
any varying degree in between depending upon its present state.   

 
The problem then posed is that of the classical problem, exactly what 

amount of temperature change is needed to bring the material to its 
ductile/brittle transition in uniaxial tension.  With only a few exceptions this 
problem is usually approached empirically by failure data generation under 
changing temperature conditions. 

 
The most common empirical approach is to use Charpy or Izod impact 

tests to give an energy of fracture as a function of the temperature, over a 
considerable range of temperature change.  The theoretical studies that have 
been done usually relate to particular metallic compositions.  The prominent 
work of Rice and Thomson [1] has already been mentioned.  Other typical 
works which focus explicitly on the ductile/brittle transition temperature are 
those of Petch [5]. Heslop and Petch [6], Armstrong [7], Ashby and Embury 
[8], Hirsch and Roberts [9], Giannattasio and Roberts [10], and a great many 
others.  These dislocation sourced mechanisms are most often for BCC 
metals and mainly relate to the temperature controlled effects of plastic flow 
versus cleavage type fracture at the nanoscale. 

 
The objective here is to obtain the theoretical prediction of the 

ductile/brittle transition temperature for all isotropic materials, not just a 
particular class of metals or a particular class of any other materials form.  
The approach will use the ductile/brittle theory specified through (1)-(12).  
This theory allows the construction of the ductile/brittle transition as a 
function of an externally imposed pressure state.  The extension into 
temperature dependence will occur through a thermo-mechanical 
relationship between temperature and pressure. 

 
The ductile/brittle transition temperature will be posed as that for the 

state of uniaxial tension taken to failure.  This is the standard and most 
common and most interesting condition for a fundamental statement of the 
ductile/brittle transition temperature. 

 
To begin, it is necessary to specialize the general failure theory in (1)-

(12) to the case of uniaxial stress superimposed with a state of hydrostatic 
stress of positive or negative sign.  Let p be the hydrostatic pressure but of 



algebraic character with positive p meaning negative hydrostatic stress and 
negative p being positive hydrostatic stress. 

 
It is further necessary to treat the problem in two parts, that of        

T/C ≥ 1/2 and that of T/C ≤ 1/2.  The former region will involve only the 
polynomial invariants failure criterion while the later could involve either 
the polynomial invariants criterion or the competitive fracture criterion.  
Whichever it is to be must be determined. 
 
Materials with 1/2 ≤ T/C ≤ 1 
 

In the materials type range shown above only the polynomial 
invariants failure criterion applies, not the fracture criterion.  The problem of 
interest is that of uniaxial tension with superimposed pressure.  This will 
open the door to the temperature variation problem of interest. 

 
For uniaxial stress σ  and pressure p the failure criterion (4) gives 
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2
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  (27) 

 
The two signs correspond to uniaxial tension and compression.  Interest here 
is only in the tensile case.  Pressure p is algebraic as already mentioned. 

 
The interest here is with the ductile/brittle transition specified by (10).  

The corresponding first invariant of the failure stress is given by 
 

 σ̂ ii
f = −3 p̂ + σ̂   (28) 

 
where σ̂  is from (27).  Now using (27) and (28) in the  ductile/brittle 
transition criterion (10) gives 
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Solving expression (29) for p̂  leads to a remarkably simple result for 
the ductile/brittle transition pressure 

 

 p̂D/B =
1
3
1− 3T

C
+ 1− 3T

C
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At T/C = 1/2 relation (30) gives p̂D/B = 0 as it must since the material 

is already at the ductile/brittle transition for uniaxial tension.  But at T/C = 1 
the pressure needed to bring the material to the ductile/brittle transition is 
from (30) 
 
 pD/B = −C

3
, T

C
= 1  (31) 

 
Thus a tensile hydrostatic stress of the size in (31) is required to bring the 
T/C = 1 material to its ductile/brittle transition in uniaxial tension.  This 
result corresponds to Case 2 in Table 3. 
 
 Now it is necessary to relate pressure p to temperature.  The uniaxial 
stress, strain, temperature relation is give by 
 
 ε11 =

σ 11

E
+α θ −θ0( )   (32) 

 
where θ  is temperature, θ0  is the ambient temperature and α  is the linear 
coefficient of thermal expansion.  The corresponding dilatational form is 
given by 
 
 ε ii =

σ ii

3k
+ 3α θ −θ0( )   (33) 

 
where k is the bulk modulus.  For pressure p this can be re-written as 
 
 ε ii = − p

k
+ 3α θ −θ0( )   (34) 

 
 Next postulate the existence of the ductile/brittle transition 
temperature and further, postulate the existence for it as a specific form or 
requirement corresponding to that of (30) for the ductile/brittle transition 
pressure.  For the standard thermo-mechanical form (34) to be compatible 
with both of these ductile/brittle transition specifications it is necessary that 



the volumetric strain on the left hand side of (34) vanish.  Otherwise, there 
would be an extraneous strain associated with these two ductile/brittle 
transition requirements.  This then gives 
 
 
 pD/B

k
= 3α θD/B −θ0( )   (35) 

 
 To find the effect of temperature change on the ductile/brittle 
transition use (35) to replace pD/B  by θD/B  through 
 
 p̂D/B →

3αk
C

θD/B −θ0( )   (36) 

 
Relation (36) is the thermo-mechanical requirement to be used to relate the 
ductility dependence on pressure to the ductility dependence on temperature.  
This is certainly not a general thermo-mechanical theory of failure but it is a 
specific result that is sufficient for present purposes.  Perhaps this would be 
the first step in developing a general thermo-mechanical theory of failure. 
 
 The procedure then is to replace p̂D/B  in the ductile/brittle transition 
result (30) to convert it to the corresponding result for temperature. 
 
 Using (36) in (30) then gives the solution for the ductile/brittle 
transition temperature as 
 

 θD/B = θ0 +
C
9αk

1− 3T
C
+ 1− 3T

C
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  (37) 

 
This final result thus shows that the ductile/brittle transition temperature 
depends upon the thermo-mechanical property α  and two nondimensional 
mechanical property forms, T/C and C/k.  This result will be checked against 
common observations, but first the other range of materials types must be 
treated. 
 
Materials with 0 ≤ T/C ≤ 1/2 
 
 For materials with this range of T/C’s both the polynomial invariants 
failure criterion (2) and the fracture criterion (5) must be considered.  For the 
stress states of uniaxial tension with superimposed hydrostatic pressure it is 
found that the critical failure criterion to be used is that of fracture (5). 



 
 The stress states for σ  and p takes the form in (5) involving principal 
stresses as 
 
 σ̂ − p̂ ≤ T

C
  (38) 

 
 − p̂ ≤ T

C
  (39) 

 
 − p̂ ≤ T

C
  (40) 

 
This then gives [the same as in (28)] 
 
 σ̂ ii

f = −3 p̂ + σ̂   (41) 
 
The ductile/brittle criterion (10) with (41) substituted into it becomes 
 
 −3 p̂ + σ̂ − 3T

C
+1= 0   (42) 

 
 Using (38) in (42) gives the final result 
 
 p̂D/B =

1
2
− T
C

  (43) 

 
Then putting this back into (42) yields 
 
 σ̂ D/B =

1
2

  (44) 

 
With knowledge from (43) that p̂  is positive it follows that (39) and (40) are 
satisfied to complete the process. 
 

Relation (43) is the pressure required to bring the material to its 
ductile/brittle transition in uniaxial tension and the tensile failure stress is 
(44).  Now to make the transition to temperature rather than pressure the 
relation (36) will be employed and substituted into (43).  This is the same 
procedure as in the previous case.  This then gives the solution for the 
ductile/brittle transition temperature as 
 



 θD/B = θ0 +
C
6αk

1− 2 T
C

⎛
⎝⎜

⎞
⎠⎟ ,

T
C

≤ 1
2

  (45) 

 
 

The two results (37) and (45) cover the entire range of T/C’s.  As with 
relation (37) the form (45) gives the ductile/brittle transition temperature as 
the ambient state when T/C = 1/2 since that is the ductile/brittle transition in 
uniaxial tension. 
 
Examples and Evaluation 
 

First consider the two limits of T/C = 1 and T/C = 0.  From (37) and 
(45) there follows 
 
 θD/B = θ0 −

T
9αk

, T
C

= 1   (46) 

 
and 
 
 θD/B = θ0 +

C
6αk

, T
C

= 0   (47) 

 
The limit (47) does not have immediate and obvious applications but the 
limit (46) is that of the ductile/brittle transition temperature for very ductile 
metals.  This class of materials runs the range from steel and titanium to gold 
and silver.  Over this range of ductile metals the coefficient of thermal 
expansion, α , and the bulk modulus, k, do not vary by large amounts but the 
uniaxial strengths, T= C, do vary greatly.  Thus it is the uniaxial strength in 
(46) that causes large variations.  This variation can be as large as by a factor 
of 6 or 7.  Gold is at the small end of the scale with the resulting 
ductile/brittle transition temperature for it being only a little less than that of 
the ambient temperature.  The properties involved in (47) at the brittle limit 
T/C = 0 probably would require special interpretation. 
 

Three typical examples for the prediction of the ductile/brittle 
transition temperature will be given.  These will be for the particular cases of 
T/C = 1, 2/3, and 1/3 materials.  The respective materials are high strength 
steel, an epoxy thermoset, and grey cast iron.  The first two predictions will 
follow from (37) and the T/C = 1/3 case follows from (45). 

 
The necessary properties for the three materials are assembled in 

Table 5.  Although these properties vary somewhat for different 



compositions of the various alloys, these are generally in the proper range 
for the three materials types.  The ambient temperatures are at θ0= 25º 
Celsius and all properties are at this temperature. 

 
  
The predictions for the ductile/brittle transition temperatures are the 

bottom items shown in Table 5. 
 
 

Property Steel Epoxy Iron 

T/C 1 2/3 1/3 

C, MPa 800 120 750 

k, GPa 150 3.7 170 

α ×10−6,
1/ºCelsius

 12 35 12 

θD/B , ºCelsius  -24.4 -18.5 45.4 

 
Table 5   D/B transition temperature predictions from (37) and (45) 

 
 
These predictions are not easily compared with data from typical impact 
tests, but these predictions are well within the range of practical experience 
for these materials.  The ductile/brittle transition temperatures are not those 
of either very ductile or very brittle behavior, but rather are at the crucial 
intermediate stage of the transition.  The predictions are quite remarkable in 
their consistency for the following reason.  The properties that enter the 
formulas (37) and (45) include those of the coefficient of thermal expansion, 
the uniaxial tensile and compressive strengths, and the bulk modulus.  In 
standard units these properties for these materials vary by about 15 orders of 
magnitude and yet the predictions fall right in the proper range of practical 
experience for all three cases, which themselves represent a huge range of 
materials types.  A less well posed theory would probably be in error by 
many orders of magnitude. 
 



 These are the first general predictions for the ductile/brittle transition 
temperatures that have ever been developed and substantiated.  The formulas 
(37) and (45) are of general applicability.  In some cases the transition may 
be fairly sharp while in many other cases it would likely be diffuse and 
gradual. 
 
 
Overall Completion and Conclusion 
 

There have been many obstacles and false starts along the tortuous 
historical path of the development of failure theory for homogeneous and 
isotropic materials.  One of the most significant difficulties has been that of 
sifting through the long term maze of experimental data on failure.  It is 
necessary to judge which data should be discarded, which is marginal but 
possibly helpful or marginal but possibly misleading, and which data 
constitutes gold standard, unshakably reliable failure data anchors. 

 
The magnitude of the testing problem is best understood as follows.  It 

is not possible to probe the necessary multi-dimensional stress space for 
failure without having multi-axial failure testing.  But multi-axial failure 
testing (in contrast to elastic properties testing) is exquisitely sensitive to 
materials quality, sample preparation, equipment design, and testing 
technique.  It is the rule, not the exception, that the data of multi-axial failure 
testing inherently and especially includes large, sometimes extreme bias and 
scatter. 

 
If that wasn’t difficulty enough, the parallel state of confusion with 

the associated failure theory was even more acutely forbidding, difficult, and 
obscure.  This general theoretical situation has been extensively examined 
and described previously [2].  Confronted by all these barriers and the 
pervasive state of negativity amounting to a presumption of impossibility, 
the present initiative set aside all previous attempts and started with a wholly 
new and unencumbered development program on failure. 

 
The most intense focus in the new program has been set upon securing 

the strongest possible theoretical foundation for the subject and then 
conducting the evaluations using only the very highest quality, time tested, 
and well accepted experimental failure data.  All this was and is supported 
by critical consistency evaluations as have been given here.  The present 
evaluation of the ductile versus brittle criteria related to failure is the final 
piece in the overall plan.  This broad gauge approach to failure 



characterization is the only one that could possibly succeed for such a long 
standing, classically difficult subject. 

 
There is just one remaining and persistent question, even doubt, that 

must be given account.  How could a macroscopic scale theory by itself 
accomplish all that is here shown to be so?  The quite common view is that 
while macroscopic theories are utilitarian, if you require a fundamental 
understanding then the probe must go down in scale, extremely down in 
scale.  It is true that many more, far more empirical excursions have been 
generated at the macroscopic scale than at any other scale but that certainly 
is not the fault of the scale itself. 

 
The underlying truth and reality is that physically insightful 

conceptions, original and revealing synthesis, and rigorous mathematics can 
and does occur at all scales.  There is no diminishing threshold of scale 
acceptability.  There is absolute scale invariance in all these matters. 

 
In particular, the macroscopic failure of materials is a complex 

amalgam of many effects at all scales but especially those of interactive 
modes of failure that are themselves seeded by defects at all scales, 
including the macroscopic scale. The macroscopic scale not only reveals 
itself, but in the case of failure it subsumes all smaller scales as well. 

 
In final historical perspective, it is now apparent that the seemingly 

insurmountable enigma of the physical sources, mechanisms, and 
mathematical representations of materials failure has been unfolded and 
revealed by the always present discipline of the mechanics of continua.  No 
special trappings or devices or subterfuges were involved.  The straight, 
traditional, uncompromising, absolutely rigorous discipline of mechanics 
enabled the entire ductile/brittle failure theory development.  Accordingly, 
all credit and all appreciation must go back to the scientific founders of 
mechanics: Newton, Hooke, Bernoulli(s), Euler, Lagrange, Navier, Cauchy, 
Maxwell, Timoshenko and many others.  Their theoretical creations always 
were and will always remain monumental.  They are timeless. 
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