
VI.  CRITICAL EXPERIMENTAL AND THEORETICAL TESTS FOR 
FAILURE CRITERIA 

 
 
     The term “critical tests” implies more than just a routine 
comparison with some convenient data.  First, a candidate failure 
criterion should undergo a rigorous examination of its physical and 
mathematical basis. Then it should be experimentally evaluated 
using only the highest quality testing data from carefully selected, 
homogeneously applied stress states.  Such formal and focused 
probes are necessary if realistic (and reliable) failure forms are to 
be successfully identified. 
 
     All of this is best preceded by a reading of the very long and 
highly unusual search for failure criteria for isotropic materials. 
The present account will begin with a brief, telescoped history and 
consequent status in order to provide the proper background for the 
evaluation. 
 
 
The Problem 
 
     Perhaps the simplest imaginable failure criterion for all 
homogeneous and isotropic materials would be that of a critical 
value of the total stored energy in the material.  Even though this 
notion was dispelled at least one hundred and fifty years ago, it is 
frequently rediscovered and enthusiastically proposed. 
 
   One of several roadblocks for this simple energy idea is that the 
yielding of very ductile metals depends only upon the critical value 
of the distortional part of the total energy, not the total energy 
itself.  This of course ties in with the fact that dilatational stress 
states cannot move dislocations, only shear stresses can do so.  
However, a distortional energy criterion (Mises criterion) does not 
work for anything but a very ductile material, as is easily 
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demonstrated.  So something far more sophisticated than an energy 
criterion must be required. 
 
     After languishing for more than one hundred years, the original 
Coulomb criterion was put into a very utilitarian form by Mohr.  
At the time, the resulting Coulomb-Mohr form was widely thought 
to have all the answers.  That transpired a little less than a hundred 
years ago.  But that too turned out to be a false hope. Maximum 
normal stress and maximum shear stress criteria also proved to be 
disappointing. 
 
     In the years following the notable Coulomb-Mohr effort and 
over some very long passage of time, the search for failure criteria 
seemed to degenerate into essentially just postulating forms.  These 
may have had analytical appeal to the originators but they had little 
or no physical foundation for support and further development. 
 
      In simplest terms, stiffness and strength (and toughness) have 
independent properties.  The underlying basic problem is to 
express these independencies in full tensor forms and to specify the 
explicit mechanical properties in each that control three 
dimensional behavior.  Of the following three areas of analytical 
mechanics characterization: stiffness, strength, and toughness, only 
that of strength still has unresolved problems, after all this elapsed 
time. There is a broad lack of understanding with respect to the 
three dimensional characterization of failure conditions i. e. failure 
criteria.  Consequently this technical area remains in a state of 
uncertainty and disorganization.  The other two areas, stress-strain 
relations (stiffness) and fracture (toughness), are extremely highly 
developed. 
 
     With the historical results for failure criteria appearing to be so 
meager and unproductive, there is a legitimate question as to 
whether the problem may be too difficult to ever yield a general 



solution. Perhaps it always will be approachable only on an 
empirical, case by case basis. 
   
   There is however a completely contrary and opposing point of 
view.  This view sees the historical efforts as having provided a 
promising “foothold” on the problem, to be used to advantage 
when the opportunity should arise.  In particular, the Mises 
criterion, despite its restrictions, could serve very well to anchor a 
more general approach.  
 
   Rather than treating failure criteria as merely an adjunct to the 
stress strain relations, the two should be recognized as being of 
completely different character thereby requiring absolutely 
independent constitutive developments. That is the direction 
followed here and in supporting works.  The technical derivation, 
showing the physical basis, will be summarized, followed by the 
evaluations of the resulting failure criteria using specific sets of 
data. 
 
   Emphasis will be given to isotropic materials.  This is not just 
because they are so overwhelmingly important, but also because 
they give the guidelines for all other cases.  However, anisotropic, 
composite materials will also be given due attention. 
 
 
 
Isotropic Materials, Theoretical Assessment 
 
    Failure criteria of the type considered here are not needed for all 
materials.  For example, elastomers and "soft" biological tissues 
probably have no need for explicit three dimensional failure 
criteria.  On the other hand, for engineering materials with 
essential stiffness characteristics, there are limits to this 
performance and failure criteria are of vital importance in 
applications.  Mainly those materials that possess a range of linear 



elastic behavior (or nearly so) are those that require the 
characterization of the limits of that performance.  These include 
most metals, the glassy (but not rubbery) polymers, some wood 
products, ceramics, glasses, many geological materials, fiber 
composite materials and others as well.  Many or most of these 
materials are isotropic or nearly isotropic. 
 
     The requisite characteristic is that of an effectively linear elastic 
behavior up to but not beyond some load level.  Failure and linear 
elasticity share a special type of inverse and complementary 
relationship.  The ideal linear elastic behavior is terminated by the 
failure and all of the nonlinearity is subsumed into the failure 
criterion.  Historically, linear elasticity theory was the progenitor 
of all classical field theories, but the related failure theory is 
required to complete the characterization. 
 
     A failure criterion takes the form of a surface in stress space.  
The stress space can either be the 3-space of the principal stresses, 
or the larger space of the full stress tensor, or smaller sub-spaces.  
The comparison with geometry is obvious.  A geometric surface in 
3-space is described by a scalar function of the coordinates 
!(xi)=1.  In the stress context, the problem is to find the scalar 
equivalent for the failure criterion problem, !("ij)=1, giving the 
failure surface in stress space.   
 
     So the problem comes down to finding the proper form for the 
scalar function here called the scalar potential of failure.  The 
failure potential is not to be confused with the plastic potential 
which was treated in earlier papers and has a different meaning and 
use. 
 
     The form of the failure potential will be taken from the same 
mathematical representation as that used with the elastic energy 
potential since it too is a scalar and in some broad sense related.  
However, significant and formative differences between the two 



will arise immediately thereafter.  As with elastic energy, take ! as 
a polynomial expansion in the invariants of the stress tensor, as 
appropriate to isotropy.  This then is the method of polynomial 
invariants, giving 
 
 

 

! = a0 + a1I1 + a2I1
2 + a3J2 + """  (1) 

 
 
I1 is the first invariant of the stress tensor and J2 the second 
invariant of the deviatoric stress tensor, as 
 
 

 

I1 =!1 +! 2 +! 3

J2 = 1
2
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where principal stresses are used.  See Section II for the more 
general case not involving principal stresses.  The expansion is 
terminated at terms of second degree, the same as with the elastic 
energy representation.  Parameter a0 merely establishes the datum 
and is not needed here.  Sometimes a coefficient different than 1/2 
is used in the J2 expression, which is alright so long as it is used 
consistently.   
 
     In the case of the elastic energy potential, the resulting form 
must be positive definite and therefore a1=0, but for the failure 
potential there is no such requirement and so a1#0.  However, for a 
physical condition that the homogeneous and isotropic material not 



fail under hydrostatic compression, it is required that a2=0, leaving 
the failure potential as 
 

 

! = a1I1 + a3J2     (3) 
 
 
Then the failure criterion becomes 
 
 

 

a1I1 + a3J2 !1    (4) 
 
 
Finally, evaluating a1 and a3 in (4) in terms of the uniaxial tensile 
and compressive strengths, T and C, gives  
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     As the overall failure criterion, (5) is necessary but not 
sufficient.  Sufficiency requires that a competitive fracture 
criterion in the more brittle range of behavior also be satisfied.  
From Section II this is given by 
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There is both geometric and physical significance to the 
commencement of the fracture criterion at T/C=1/2.  It is at this 
value of T/C that the three fracture planes (6) in principal stress 
space are just tangent to the paraboloid (5) of the failure potential.  
The fracture criteria (6) then introduce the occurrence of  “corners” 
into the yield/failure surface characterization for T/C<1/2. 
 
     The forms (5) and (6) comprise the complete, two property 
failure criterion for homogeneous and isotropic materials.  In 
effect, the failure criterion and the elastic energy (from which the 
stress-strain relations follow) are joint constitutive relations.  They 
are independent, but one without the other is incomplete.  The 
elastic energy has two properties (E and $) and one condition 
(positive definiteness) while the failure potential also has two 
properties (T and C) and one condition (no failure under 
hydrostatic compression).   
 
     Derivatives of the failure potential with respect to stress can be 
used to gain information about the orientation of the failure 
surface.  However that topic is beyond the scope of what is being 
collected here. 
 
     Putting the above results aside until experimental evaluation in 
the next sub-section, now a contemporary example of a postulated 
failure criterion will be given as a case study in contrasts.  A major 



aerospace research group has for several years advocated that the 
material failure criterion (for the isotropic matrix phase in 
composites) be written directly in uncoupled, two parameter form 
as  
 
 

 

I1 !"

J2 ! #
       (7) 

 
 
The first of these is said to associate with a fracture behavior and 
the second with yielding and flow.  Taking both % and & to be 
calibrated by both T and C then gives 
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       (8) 

 
 
     It is not clear what the physical basis of (7) and (8) may be.  
The equations merely reflect that J2 applies to ductile metals and  
there also are claims (erroneous) that I1 completely covers brittle 
materials, so the proponents take both of them as independently 
and simultaneously required for all glassy polymers (and by 
extension for all materials).  This is typical of the many schemes 
that have been tried.  Certainly all obvious ways of combining the 
invariants (including I3 or J3) have been proposed and in some 
cases claimed to be the long sought form for failure criteria.  Most 
of these attempts do not receive a critical comparison with data on 



well characterized homogeneous and isotropic materials.  Rather, 
they usually involve comparisons with a window of data from non-
uniform stress states in complicated forms or structures where 
many other factors are also in effect, but not acknowledged or even 
recognized. 
 
     With regard to the possibility of forms (8) being a useful, well 
posed failure criterion, consider the following.  One of the basic 
tenets of materials science is that superimposed pressure increases 
the strength of the material.  This happens in all cases except the 
limiting case of a Mises material.  The failure criteria derived here, 
(5) and (6), embody this effect in an interactive manner.  In 
contrast,  the forms (8) predict that pressure has no effect at all on 
the uniaxial compressive strength nor on the shear strength, while 
they give an unusual prediction for the effect of pressure on the 
uniaxial tensile strength. 
 
     Even more objectionable is the prediction of (8) in the case of 
the ductile limit at T=C.  For two dimensional biaxial stresses, (8) 
gives only a portion of the usual Mises ellipse because the first of 
(8) truncates it by a straight line cutoff in the first quadrant.  In the 
range of polymer behavior, (8) still exhibits the same 
characteristic.  At T=C the derived failure criteria (5) and (6) 
directly recover the full Mises criterion. 
 
     All of these difficulties with forms (7) and (8) still occur when 
the invariants are interpreted in terms of strains rather than 
stresses.  This is easily shown by substituting the isotropic stress-
strain relations into (7), whichever way they are specified, to 
directly obtain the other form.  Thus (7), whether in their stress or 
strain forms, fail to pass standard tests of physical consistency.  All 
tentative failure criteria should be subjected to conceptual tests of 
the types just discussed.  The cloud of ill-conceived failure criteria 
over the years has done much to obscure and impede progress. 
 



     There also have been a few very clever constructs, such as the 
Coulomb-Mohr form, but unfortunately they do not coordinate at 
all well with the physics of failure.  This will be further shown 
through comparisons with data in the next sub-section since the   
C-M criterion is by far the most substantial and prominent of all 
historical forms.  
 
 
Experimental Evaluation (Isotropic) 
 
     Return now to the isotropic material failure criteria (5) and (6).  
As a conjecture, the form (5) has been known for a very long time, 
at least from about the time of Mises.  The derivation of it given 
here adds substance and context, revealing its dual relationship to 
energy.  It is however the coordination of (5) and (6) that provides 
the comprehensive core extending from ductile limit to brittle 
limit.  Nevertheless, none of this is of any consequence unless it 
reflects physical reality.  The criteria (5) and (6) must now pass  
tests of evaluation with meaningful data or be rejected. 
 
     If the objective were merely to characterize failure for a single 
material type, epoxy polymers for example, then that could not 
really be considered as developing failure criteria.  In reality it 
would just be “curve fitting” for that material with all the hazards 
and pitfalls for anything but the simplest interpolations.  To 
validate a failure criterion it is necessary to test it against widely 
different classes of materials.  Otherwise there would be no 
confidence in its general applicability.  The qualifier “general 
applicability” refers not only to different types of materials, but 
also to all possible stress states for each. 
 
     More specifically, for isotropic materials it is necessary to cut 
across the full range from very ductile to very brittle materials.  
The extremes are quite apparent, a very ductile metal should be 



used to test the one extreme and most likely a very brittle 
geological material should be tested for the other extreme. 
 
     The intermediate case is somewhat more problematic.  
However, at least two possibilities are at hand for a material that is 
neither very ductile nor very brittle.  These two would be cast iron 
and very glassy, un-toughened polymers.  Of the two, there 
appears to be more high quality data for cast iron and it is what 
will be included here.  Although cast iron is loosely thought of as 
being brittle, that is only so in comparison with ductile steels.  
Over the full range of ductile/brittle behavior, cast iron lies as 
ideally intermediate, for this purpose.  This will be explained more 
fully later. 
 
     Before looking at individual data cases one more testing 
requirement should be observed.  It is very important that testing 
results not come from conditions containing steep stress gradients.  
Only homogeneous or nearly homogeneous stress states provide 
the clarity level consistent with seeking strength type mechanical 
properties for homogeneous materials. 
 
     The initial test case concerns the ductile limit at T=C.  There are 
several different metals that could be used to generate data.  The 
first substantial and enduring testing results were those of Taylor 
and Quinney [1] in 1931.  They used the tension-torsion of thin 
walled tubes to generate plots of normal stress "11 versus shear 
stress "12.  The two theoretical forms of interest are the Mises 
criterion and the Tresca criterion.  The  Mises criterion is the form 
from the general failure criteria (5) and (6) at T=C and it also 
represents a distortional energy criterion.  The Tresca criterion is 
that of the Coloumb-Mohr theory at T=C, and it also represents a 
maximum shear stress criterion. 
 
     The comparison between the two theories and the ductile metals 
data are as shown in Fig. 1. 



 

 
 

Fig. 1  Taylor, Quinney [1] failure data for ductle metals, T/C=1 
 
 
The data clearly favor the Mises criterion and thereby the general 
criteria (5) and (6).  G. I. Taylor was one of the great scientists of 
the twentieth century.  These results from him have been 
substantiated many times and are now considered to be classical.  
R. Hill [2], who also was and is a world class contributor, affirms 
this status for these results. 
 
     Next consider the intermediate case which is in between 
extreme ductility and extreme brittleness.  This case is that of a 
particular type of cast iron.  In such cases the T/C ratio is about 1/2 
to 1/2.5 which is effectively in the middle range between T/C=1 
for ductile metals and T/C of about 1/15 or even much less for 
brittle geological materials.  The biaxial cast iron failure data in 
Fig. 2 are by Cornet and Grassi [3], the first of whom was a careful 
experimentalist at U. C. Berkeley.  The T/C value is 1/2.16. 



 
 
Fig. 2  Biaxial failure data on iron, Cornet and Grassi [3], 

T/C=1/2.2 



The comparison of the data with failure criteria (5) and (6) is 
favorable while the comparison with Coulomb-Mohr is 
unfavorable.  These data have effectively been reproduced by 
several other investigators for other types of cast iron.  The fracture 
criterion (6) is just barely discernable as a slightly flattened “spot” 
on the failure envelope of Fig. 2.  The Mises or Tresca criteria by 
themselves would be completely unsatisfactory in this middle 
range case. 
 
     As the third critical test case, a very brittle material must be 
used.  Reliable failure data was generated on Dolomite by a 
respected geophysicist at M.I.T.  These results are from Brace [4] 
on samples considered to be close to isotropic, and with 
T/C=1/14.9. 
 

 

 
 
 
Fig. 3  Tri-axial failure data for Blair Dolomite, Brace [4], 

T/C=1/15 
 



The failure criteria (5) and (6) provides a good correlation with the 
data in Fig. 3, whereas Coulomb-Mohr fails to follow the downturn 
in the data and merely projects a straight line failure envelope.  
 
     The upper envelope shown in Fig. 3 is that due to the fracture 
criterion (6).  The experimental uncertainty along the horizontal 
axis is quite considerable and within the proximity of the predicted 
failure envelope.  Probably the most difficult (and uncertain) 
testing result is that for uniaxial compressive strength C.  If the 
value of C given in the reference were reduced by 10% the 
prediction from (5) for the downturn region would fall within the 
data scatter. 
 
   If the stress states were taken with "11 and "22= "33 the 
theoretical envelope would have the down turn just inside the data, 
rather than just outside the data, as in Fig. 3.  If one extends the 
axes in Fig. 3 one sees the tremendous divergence between the 
Coulomb-Mohr theory on the one hand and the data and the 
present theory on the other hand.  The downturn in the data and 
theory shown in Fig. 3 is not surprising.  The same effect shows up 
in The  Brittle Limit.  It should be noted that the axes labels in Fig. 
3 are different from those used by Brace in order to follow 
common convention. 
 
     A comprehensive failure theory must span failure mode types 
from ductile flow to completely brittle disintegration.  It is nearly 
inconceivable that this could be accomplished without a formal 
and rigorous framework for treating ductile versus brittle 
behaviors.  The present failure theory, which culminates in the 
explicit criteria (5) and (6), does have an underlying ductile/brittle 
formalism.  This is mentioned in Section II and presented in the 
papers upon which Section II is based.  The complete formalism 
gives not only the failure envelopes, but also the division of 
domains into ductile versus brittle regions. This will be briefly 
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recalled here since it too is amenable to experimental verification 
or repudiation. 
 
     The concept of the ductile/brittle transition is basic to materials 
science.  Usually this is posed as a temperature effect and the 
ductile/brittle transition temperature can be located by scanning 
failure type against temperature change.  The same approach can 
be taken with a pre-imposed state of pressure.  Sufficient pressure 
can convert a perceived brittle material into a effectively ductile 
material and there is a transition from one state to the other. 
 
     This interpretation of the ductile/brittle transition admits 
extension to a variety of other conditions.  For example, any 
particular state of three dimensional stress dictates whether the 
particular failure mode is ductile or brittle.  For a given material, 
predominantly tensile stress states are far more likely to be brittle 
in failure than are predominantly compressive stress states.  
Whether a particular failure mode will be ductile or brittle depends 
explicitly and crucially upon the stress state itself, as well as the 
material.  Conversely, for a particular stress state, one can scan 
across various materials types to determine the ductile versus 
brittle nature of the failure mode. 
 
     Following the above prescription, for any particular stress state 
the material type will be varied by varying the T/C ratio, and then 
the failure mode type, ductile or brittle, will be identified.  From a 
rather lengthy derivation in the papers in Section II  the 
ductile/brittle transition follows from the intersection of failure 
criteria (5) and (6) as 
 
 

 

I1 = 3T !C D /B Transition
= T +C( ) + 2 T !C( )

 (9) 

 



where I1 = "11 + "22 + "33 is the first invariant for the stress state of 
interest that is on the failure envelope from (5).  The ductile and 
brittle conditions are then given by 
 
 

 

I1 < 3T !C Ductile

I1 > 3T !C Brittle
      (10) 

 
 
where again I1 is from (5).  Relation (9) is physically meaningful 
only if the solution for T/C falls in the range from 0 to 1.  
Otherwise (10) shows the condition to always be ductile or brittle 
for all allowable values of T/C.     
 
     It would be expected that the criterion for the ductile/brittle 
transition would involve the first invariant part of the total stress 
state at failure.  This can be thought of as algebraic pressure and 
that has an intimate relationship with temperature in changing the 
state of substances. 
  
     A simple example will illustrate the use of (9) and (10).  Take 
the state of uniaxial tension.  For this case the solution from (5) is 
almost trivial, it is I1=T, and substituting that into (9) gives 
 
 

 

T
C

= 1
2

Uniaxial Tensile D /B Transition 

 
 
For materials with T/C>1/2 the tensile failure is predicted by (10) 
to be ductile and for T/C<1/2 the tensile failure is predicted as 



brittle.  This  is in accordance with most experimental observations 
for a wide variety of different materials types.  Most metals and 
most polymers are found to be on the ductile side of the predicted 
D/B transition at T/C=1/2, while a few metals, a few polymers, and 
all ceramics, glasses, and geological materials are on the brittle 
side.  The three preceding data test cases are in agreement with this 
classification of behavior.   The complete spectrum of 
ductile/brittle uniaxial tensile behaviors is yet another aspect of 
experimental corroboration of the general theory. 
 
     For uniaxial compression, from (5) I1= - C and that into (9) 
gives T/C=0.  Thus uniaxial compression is always ductile, but 
becomes borderline brittle as T/C approaches the brittle limit. 
 
     The range covered by this failure theory is 0'T/C'1.  An 
interesting sequence of quite simple stress states that covers the 
full range of ductile/brittle T/C’s is given in the table below. 
 
 
      Stress State   D/B Transition  D/B Behavior 
            T/C=            T/C 
 
Equal Biaxial Tension   1   <1     Brittle 
 
 
 
Uniaxial Tension   1/2   >1/2  Ductile 
         <1/2  Brittle 
 
 
Simple Shear    1/3   >1/3  Ductile 
         <1/3  Brittle 
 
 
Uniaxial Compression   0   >0     Ductile 



It follows from (10) that equal triaxial tension is brittle for all 
values of T/C and equal biaxial compression is ductile for all 
values of T/C.  It also is recalled that there is no failure under equal 
triaxial compression.   
 
     The two uniaxial stress states have already been discussed.  The 
state of simple shear is also of importance.  For simple shear I1=0 
and then (9) gives the D/B transition as being at T/C=1/3.  From 
the failure criteria (5) and (6) at T/C=1/3 it is found that the shear 
failure stress is exactly the same as that of uniaxial tension at this 
value of T/C.  Shear stress rotated 45 degrees is equivalent to a 
tensile stress component and an  orthogonal compressive stress 
component of the same magnitude.  This shows that the 
compressive stress component has no effect on the failure mode, it 
is entirely caused by the tensile stress component.  This is 
symptomatic of brittle behavior. 
 
     Perhaps the most interesting case in the above table is that of 
the equal biaxial tension.  The solution from (5) for "1 = "2 and 
"3 =0 gives the tensile root as 
 
 

 

I1 = 2 T !C + T 2 !TC +C 2( )  

 
 
and this into (9) gives the D/B transition as being at T/C=1.  Now a 
material such as aluminum or steel with T/C=1 is certainly thought 
of as being a ductile material, and it most assuredly is ductile in 
uniaxial tension.  But the result in the Table shows that such 
normally and nominally ductile materials but in a state of equal 
biaxial tension are actually at the transition between being ductile 
and brittle.  Experimental pressurization of ductile steel spherical 
pressure vessels reveals failure modes that are more suggestive of 



brittle behavior than of ductile behavior.  Typical failure modes for 
this situation are as shown below, as given by Talja et al [5]. 
 
                                

 
 
Fig. 4  Spherical steel pressure vessel failure mode, Talja et al [5] 

 
 
     In principal stress space, the failure criterion (5) takes the form 
of a paraboloid, while the fracture criteria (6) are planes that cut 
off portions of the paraboloid.  The ductile/brittle transition 
specification (9)  is that of a plane normal to the axis of symmetry 
of the paraboloid.  It divides the paraboloid into ductile and brittle 
regions.  For T/C<1/2 it also cuts across the three fracture planes 
thus giving failure modes of brittle fracture and of ductile fracture 
types. 
 



 
Isotropy Conclusion 
 
     There are many other isotropic material failure criteria that have 
been proposed and (inappropriately) used.  These can easily be 
evaluated using the data cases just discussed.  For the Mises and 
Tresca criteria, only the Mises form is completely satisfactory for 
ductile metals, but both are in serious error for everything else.  Of 
the two parameter variety, these include the maximum stress 
(tensile and compressive), the maximum strain, and the Drucker-
Prager forms.  All of these compare very poorly with the data 
cases.  Equally importantly, all of the above criteria fare no better 
in assessing their theoretical roots.  The inadequacy of the 
Coulomb-Mohr form has already been shown here many times. 
 
     Other data evaluations, for other materials types including 
polymers and ceramics are given in the papers cited in Section II.  
Those results are compatible with the conclusions reached in this 
section. 
 
     Three parameter forms have not been considered here because 
of the success of the two property theory that has been the main 
focus. In recent times three parameter forms have mainly been 
used in problems of crack formation in ductile metals after 
experiencing extreme plastic deformation.  Typically the third 
parameter involves the third invariant I3, often in the form of the 
Lode angle. 
 
     The failure theory developed here is for a totally different 
purpose than that just mentioned.  The present work is relevant to 
the onset of dominating irreversible deformation, whether it be due 
to the inception of major plastic flow, as a form of failure, or 
explicit, brittle failure itself, or due to any other mechanism. 
 



     The overall conclusion from this failure theory and its 
experimental evaluation is that the two properties T and C in 
combination provide a fundamental and comprehensive calibration 
of materials strength performance.  The defining two part failure 
criterion, (5) and (6), embedding these two properties completes 
the constitutive specification for homogeneous and isotropic 
materials. 
 
 
Fiber Composite Laminates 
 
 
     Fiber composite materials present a particular challenge in 
characterizing failure because of the complicated microstructures 
and macro-structures.  The fibers are not perfectly straight and 
continuous with perfectly ordered spacing between them.  Another 
severe complication is that of the extreme anisotropy at all scales.  
Nevertheless these materials are of importance and require 
treatment here.  The scales of particular relevance are (i) the 
atomic scale inside the fibers,  (ii) the fiber scale itself, (iii) the 
lamina scale into which the fibers are (nominally) aligned within a 
matrix phase, and (iv) the laminate scale comprised of many 
lamina arranged at various orientation angles. 
 
     Interest here is with carbon fiber science and technology.  At 
the atomic scale the carbon-carbon bond is one of truly superior 
capability.  The ideal carbon fiber would actually be  that of a  
continuous multi-walled nano-tube.  As manufactured, carbon 
fibers have nano-scale structures that are far different and vastly 
more irregular than those of nano-tubes.  As the result, the fiber 
scale properties are much diminished from the smaller nano-scale, 
ideal properties.  Correspondingly the strength properties going 
from the fiber scale to the lamina scale are reduced.  So to in going 
from the lamina to laminates scale, the strength properties are 
reduced.  The pattern is obvious, enlargements in scale can do 



nothing but cause overall reductions in the strength properties.  
Since all applications are at the laminate scale, the attention here 
must primarily be at that scale, although all scales are of great 
general interest. 
 
     Two general approaches are considered here for developing 
failure criteria and predicting failure at the laminate scale.  These 
two methods are those of progressive damage initiating at the 
lamina scale and polynomial invariants which is completely at the 
laminate scale.  Both of these methods are described in Section V 
and will be summarized here.  Of course there are many other 
approaches available.  For example there are many different 
approaches just at the micromechanics level where the individual 
fibers and the matrix phases are given distinct and different failure 
criteria.  One such criterion was discussed earlier under the 
isotropic materials heading as an example of an unsatisfactory 
approach to failure criteria for isotropic materials (intended for the 
matrix phase in composites). 
 
     In progressive damage the lamina scale failure characterization 
is used to predict laminate failure.  The occurrences of essentially 
matrix controlled failure modes and fiber controlled failure modes 
in the various lamina must be accounted for sequentially as the  
load increases until so much damage has built up in the many 
lamina that the laminate can no longer sustain the load.  What 
sounds simple in concept is not so simple in practice.  Specific 
difficulties and complications with this approach will be described 
a little later. 
 
     In the other approach, polynomial invariants, the failure 
criterion is completely developed at the laminate scale.  The 
geometric arrangements of the lamina can be used to specify the 
symmetry properties of the overall laminate.  This then is used to 
develop laminate failure criteria with unspecified properties that 



must come from calibration with minimal failure data from 
specific and simple stress states. 
 
     In the case of progressive damage for application to carbon 
fiber composites, there is a useful idealization called fiber 
dominated progressive damage.  In these cases the matrix 
controlled strength properties are considered to be small enough to 
allow neglecting them compared with the fiber controlled 
contributions to strength.  This simplifies the procedure but still 
preserves the basic forms of the failure envelopes in stress space, 
for fiber dominated systems. 
 
     A particularly important layup is that of the quasi-isotropic 
form involving fibers in equal proportions in the 0, +45, -45, and 
90 degree directions.  Under a biaxial stress state, "11 versus "22, 
fiber dominated progressive damage gives a diamond shaped 
failure envelope.  Unfortunately there are conflicting experimental 
data sets for this problem.  One set partially supports the diamond 
shaped failure envelope while the other set decidedly does not 
support the diamond shaped form.  This circumstance and these 
results are described in detail in Section V.  So the situation is 
unsettled.  It would be helpful to have some independent 
evaluation of the method of progressive damage, especially since it 
is so widely used.  Along these lines there is only a small but fairly 
decisive indicator of the state of effectiveness for progressive 
damage, which will now be described. 
 
     There is a simpler problem with which the method of 
progressive damage can be conceptually tested.  This problem is 
also for the quasi-isotropic layup, but with a much simpler 
imposed stress state, namely that of uniaxial tension.  Specifically, 
fiber dominated progressive damage can be used to predict the 
uniaxial tensile strengths in two cases: 
 
      



 (i) Uniaxial stress aligned with a fiber direction 
 

(ii) Uniaxial stress aligned mid-way between fiber directions 
 
Another way to say this is for (i) the stress is in the 0 degree 
direction and for (ii) the stress is in the 22.5 degree direction. 
 
     In Section V it is shown that fiber dominated progressive 
damage is equivalent to a laminate criterion of critical normal 
strain in fiber directions.  Applying this criterion to problems (i) 
and (ii) it is found that for the strength normalized to the 0 degree 
case there results 
 

 (i) "T
11=1,    0˚ direction 

 
     (ii) "T

11= 3/(1+(2) =1.243,   22.5˚ direction 
 
Thus the uniaxial strength is predicted to be 24.3% greater in the 
mid-way between fiber directions than in the fiber directions for 
the 0/+45/-45/90 degree quasi-isotropic layup. 
 
     The same problems can be posed for the 0/+60/-60 degree 
quasi-isotropic layup.  It is found that the mid-way between fiber 
directions strength is predicted to be 50% greater than in the fiber 
directions. 
 
     These predictions from fiber dominated progressive damage 
certainly seem to be very un-physical and extremely unlikely, and 
they cast considerable doubt upon the method of progressive 
damage.  For this reason the method of progressive damage will 
not be pursued further here.  It must be added however that 
definitive and determining experimental data are not yet available.  
Until that gap in understanding is closed with unambiguous data a 
final pronouncement cannot be made 
 



     There also is another avenue that could be considered.  In the 
fiber dominated progressive damage method the fiber controlled 
failure is solely determined by the stress component in the fiber 
direction with no interaction from the other stress components.  
This could be modified to bring in the other stress components and 
thereby change the failure prediction.  But it is difficult to see how 
this could be done in a rational, physical properties oriented 
manner.  More likely, it could only be done as a parameter 
variation exercise, which would not advance the level of 
understanding. 
 
     Another complication is with the difficulty in testing fiber 
composites for strength.  There should be independent 
corroboration of critical data sets.  Although this is reasonably well 
satisfied for the various classes of isotropic materials, it is not 
usually available for evaluating failure criteria for anisotropic fiber 
composite materials.  The latter are extremely difficult to test, at 
least partially because of the extreme anisotropy. 
 
     The negative situation just described with progressive damage 
leaves only the polynomial invariants method as available for 
further investigation here.  From Section V the in-plane failure 
criterion for a quasi-isotropic laminate is given by 
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where T and C are the in-plane uniaxial strengths and S is the in-
plane shear strength.  Thus there are three properties to be 
determined.  A reasonable estimate from Section V of the shear 
strength property is given by 
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     Using (11) and (12) the theoretical form is compared with the 
biaxial testing data of Welsh, Mayes, and Biskner [6] as shown in 
Fig. 5. 



 
 
Fig. 5  Quasi-Isotropic laminate failure, data from Welsh, Mayes, 

and Biskner [6] 



The comparison of the polynomial invariants failure envelope with 
the data is quite good.  It is certainly far better than that given by 
the diamond shaped failure envelope from progressive damage.  
However, this result cannot be considered as definitive for the 
reasons already mentioned.  Far more data cases are needed before 
anything definite can be said.  Up to date evaluations of the types 
given earlier by Hinton, Kaddour and Sodden [7] are needed. 
 
     The method of polynomial invariants also gives failure criteria 
for the more general cases of orthotropic laminates, and for 
delamination as well.  These are given in Section V, but as already 
stated, the major missing piece is that of reliable testing data. 
 
      It is apparent and obvious that the development of failure 
criteria for fiber composite materials is only at a beginning stage 
compared with that for isotropic materials.  In the isotropic 
materials case it was argued earlier that any proposed failure form 
could not be considered to be a verified and qualified failure 
criterion until and unless it is convincingly shown to be applicable 
to a wide variety of different materials types.  Nothing even 
approaching that situation has been given (here or elsewhere) for 
the composites case.  The only class of composites considered here 
is that of highly anisotropic lamina arranged in laminate forms, 
through and including orthotropic symmetry.  There is however a 
considerable advantage for the approach taken here for this 
particular problem.  The method of polynomial invariants for fiber 
composite laminates did not just coalesce in total isolation from 
anything else.  It was and is a direct generalization of the method 
of polynomial invariants as successfully applied to isotropic 
materials. 
 
     Much further work in the composites area is needed and will be 
useful, but there already is a treasury of valuable information from 
investigations into individual failure modes.  Condensing all that 
information into concise, compact, and especially verified forms 



for failure criteria is still a missing building block for the general 
applications of fiber composite materials. 
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