
 
XIV. COMPLETION AND CLOSURE ON FAILURE CRITERIA FOR 

UNIDIRECTIONAL FIBER COMPOSITES 
 
 
Background 
 
     In Section III and in Christensen [1] the polynomial invariants method 
was used to develop failure criteria for aligned fiber composite materials.  
For the highly anisotropic cases such as with carbon fibers in a polymer 
matrix phase, the failure theory naturally partitioned into two separate failure 
criteria, one being matrix controlled and one being fiber controlled.  There 
resulted seven individual failure properties needed to calibrate the theory. 
 
     One of the seven calibrating failure properties was eliminated on an order 
of magnitude basis, leaving four properties as being matrix controlled and 
two as being fiber controlled.  The four matrix controlled failure properties 
are T22, C22, S23, and S12.  The first three are the transverse failure properties, 
and therein was found to lie an unusual problem.  The failure criterion 
revealed an apparent extreme sensitivity to the size of the transverse shear 
failure property S23 relative to the sizes of the two transverse uniaxial failure 
properties T22 and C22. 
 
     A micromechanics analysis was conducted in Section IX to determine S23 
in terms of  T22 and C22 in order to overcome the sensitivity problem.  But 
this then brings in a subsequent question as to whether it is a legitimate 
operation to eliminate one of the matrix controlled failure properties in this 
manner, or is it just an artificial device to get around a perceived but not real 
sensitivity problem. 
 
     All of these matters are opened up here, closely examined, and ultimately 
resolved with finality.  The failure properties sensitivity problem will turn 
out to provide the missing insight needed to complete the development of 
the failure criterion. 
 
Derivation 
 
     The controlling failure criteria for unidirectional fiber composite 
materials, [1], are given by the matrix controlled form 
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and the fiber controlled form 
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or its equivalent common form  
 
 
 −C11 ≤σ 11 ≤ T11   
 
 
In the matrix controlled criterion (1) it is necessary to have 
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in order to always have real roots from the quadratic form of the failure 
criterion.  The fiber controlled criterion (2) is of the well known normal 
stress form, but it has a rational basis in the derivation rather than just the 
usual empirical appeal. 
 
     A very interesting problem quickly arises from these failure criteria 
forms.  Often the reported failure data for T22, C22, and S23 are found to 
violate the restriction (3).  Does this mean that the matrix controlled failure 
criterion (1) is ill posed and thereby unacceptable?  The failure properties, 
especially C22 and S23, are notoriously difficult to determine with reasonably 
high accuracy.  This then enlarges the problem to one or other of the two 
propositions: (i) either the failure criterion (1) is improper or (ii) the 
materials failure properties must be determined to an extremely, perhaps 



unattainably, high level of accuracy.  This work explores this difficulty and 
seeks an acceptable direction for moving forward. 
 
     The problem just outlined does not involve the axial shear strength 
property S12 so the reduced relevant failure criterion (1) under examination 
is given by 
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The issue of the behavior of failure criterion (4) comes into the sharpest 
focus when the stresses are taken to be those of equal biaxial stress with 
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and where positive P22 is the compressive failure level. Thus (4) becomes 
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In this form it is seen how the restriction (3) must come into consideration. 
 
     Let the failure strengths P22 and S23 be nondimensionalized as follows 
 
 

 
P̂22 =

P22
C22
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Then (6) becomes 
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Alternatively Ŝ232  can be determined directly from (8) to give 
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Although the quadratic form (8) gives two roots the immediate concern here 
is with the case of the positive root, the compressive eqi-biaxial stresses at 
failure. 
 
    From (8) the functional dependence of P̂22  versus Ŝ232  can be found for 
specified values of T22 /C22 .  The limiting envelopes at T22 /C22 = 0  and 1 are 
as shown in Fig. 1. 



 
 

Fig. 1 Failure envelopes from (8) 
 
 
The two asymptotes at P̂22 = 1/ 2  and Ŝ232 = 1/ 4  shown in Fig. 1 are 
independent of the  value of T22/C22. 
 
     The key to proceeding further is to determine what region of the failure 
map shown in Fig. 1 is occupied by highly anisotropic, full density fiber 
composite materials.  As it stands the entire failure map is for all 
transversely isotropic materials that are also highly anisotropic.  Very stiff 
and very strong fiber composites are in the left most region of Fig. 1.  
Materials to the right could be highly porous transversely isotropic materials 
such as ones that have a unidirectional packing of bonded “soda straw” type 
of forms. 
 
     Carbon fiber composites are to the left of 
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in Fig. 1 because such composites are generally expected to have P22 > 2C22    
and certainly must have P22 ≥ C22,  placing them in the upper region on the 
left hand side of Fig. 1, as shown. 
 
     From Fig. 1 it is now graphically seen why it is necessary that restriction 
(3) be satisfied.  Furthermore it is immediately obvious that in the fiber 
composites region which is given by  
 
 
 1

4
T22C22 ≤ S23

2 ≤ 1
3
T22C22   (10) 

 
 
very small changes in the shear strength property S23 produce very large 
changes in the compressive eqi-biaxial failure property P22.  This 
characteristic places severe and probably impossible demands upon the 
experimental accuracy required in determining S23 for fiber composites.  Not 
only do reported data often violate the lower limit in (10), as already 
mentioned, other reported data often violate the upper limit in (10). 
 
     Consider briefly the reverse situation, that is if the interest were in very 
different types of materials modeled by failure in the right hand side of Fig. 
1.  Then the failure behavior would be of the converse type.  There would 
still be great sensitivity of the failure properties, but very small changes in 
P22 would give extremely large changes in S23.  This shows the importance 
of carefully determining the limits of behavior for any particular class of 
materials.  High strength and high stiffness fiber composites are confined to 
the left most portion of Fig. 1 
 
     The original question posed at the beginning is now answered, there is no 
inherent problem with the legitimacy of the failure criterion (1) or its 
reduced form (4).  However, this then creates a new uncertainty.  How 
should the property S23 be determined when it cannot be determined directly 
with the required accuracy.  In principle one could determine P22 and then 
using (9) S23 would be found.  That would certainly overcome the sensitivity 
problem.  Regrettably that is not a practical solution because it is a difficult 



experiment to directly determine P22 and it could never be done on a routine 
basis.  Fortunately this complex situation is not completely blocked, there 
remains an alternative approach.   
 
     The sensitivity problem with S23 was recognized earlier, and a 
micromechanics analysis was used in Section IX to determine S23 
theoretically.  Specifically, the isotropic material failure theory was used to 
determine the failure of the matrix phase at the micro-scale that then lead to 
the macroscopic result  
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It was a long and complicated derivation to find S23 and it was only 
determined for the most common value of the transverse strengths ratio 
T22/C22 =1/3.  So the micromechanics result (11) represents an estimate for 
S23 with respect to the entire range of possible T22/C22 values, even though it 
is an exact result at one particular value.  Perhaps it is a very good estimate, 
but it’s still only an estimate.  The task now is to determine how useful or 
not useful the single value (11) actually is. 
 
     The approach to be followed here is to take the general form 
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and determine the functionλ T22 /C22( ) . Then the value of (11) can be 
assessed and/or replaced by a new and more general result for (12). 
 
      



The known information to be used in determining λ  is its value at the one 
specific point 
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and its range given by (10), thus 
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The limits on T22 /C22 are 
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It is easily reasoned that the limits shown in (14) and (15) associate with 
each other through 
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If they were taken the alternative way it would lead to physically irrational 
and unacceptable results. 
 
     Take the general form for λ  as given by 
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This is the usual form found for the effective stiffness properties in many 
different types of composite materials.  It is now utilized here for strengths. 
 
    The three parameters in (17) are to be found from the three conditions 
stated by (13)-(16), giving α =1, β =3, and γ =5.  With λ  so determined, the 
final general form for S23 is given by 
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     With the explicit result (18) expressing the transverse shear strength in 
terms of the transverse uniaxial tensile and compressive strengths, then the 
solution for P22 can be found by substituting (18) into (8).  And after 
consolidating many terms there finally results 
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It is readily shown from (18) and (19) that S23 and P22 correctly satisfy all 
the proper limiting case behaviors at T22/C22=0 and 1.  Relations (18) and 
(19) are remarkably simple and concise results considering the complexity 
of the problem.   
 



     Now for comparison purposes it is useful to obtain the solution for P22 
using the simplified form (11) for S23.  Combining (4) and (11) gives 
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The form (20) and its simple antecedent form (4) do not recover the proper 
limiting results at T22/C22=0 and 1.  Nevertheless they may still be quite 
useful over the usual and rather narrow range of values of T22/C22 for fiber 
composites.  These possibilities will be examined next. 
 
 
Evaluation 
 
 
     Next a comparison will be made between the two forms for S23, namely 
the form directly from micromechanics (11) and the more general form 
derived here, (18).  The comparison also importantly extends to the 
respective two forms (19) and (20) for P22, the eqi-biaxial stresses at failure, 
both tensile and compressive.  To effect this comparison it is necessary to 
assign the values of T22/C22.  Of course the most common value of 
T22/C22=1/3 will be given, but also the two common and usual limits shown 
by typical fiber composite materials are namely 
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All three of these cases and comparisons are shown in Table 1 where Eq. 
(20) is based upon Ŝ232 =2/7 and (19) is based upon the more general form for 
S23, (18). 
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 -0.158 -0.230 -0.297 

P̂22 (19)
Tension

 -0.157 -0.230 -0.301 
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 3.16 2.90 2.70 

P̂22 (19)
Compression

 2.66 2.90 3.10 

 
Table 1   Comparison of results based upon the simplified form for Ŝ232  and 
the general form for Ŝ232  
 
 
From the first two rows in Table 1 it is seen that the comparisons between 
the S23 values are extremely close, further showing the extreme sensitivity of 
this property.  In the center two rows, the tensile values for P22 are also 
extremely close by the two methods.  In fact nearly all stress states would be 
extremely closely specified by the two forms for S23.  The only stress state 
that brings out the differences between the two cases is that of eqi-biaxial 
compressive failure.  As seen from the last two rows in Table 1, the 
differences between the values for compressive P22 are about 13% at the one 
usual limit and about 19% at the other usual limit.  These differences are 
about the same as the maximum differences between the Mises and Tresca 
criteria for isotropic materials.  Usually differences of these amounts are 
acceptable for failure assessments.  Based upon all of these results, either 
form for S23, (11) or (18), is perfectly acceptable for general and normal use.  
 



     Now an assessment of this overall matrix controlled failure criterion for 
fiber composites will be given.  From Table 1 for the most common case of 
T22/C22=1/3 it is found that in eqi-biaxial stresses the ratio of the tensile 
failure level to the compressive failure level is given by 
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Anything much smaller than this value might incorrectly be seen as 
“masking” an inclination for the material to giveP22+ →∞ , which is utterly 
impossible.  On the other hand, anything about the same size as T22/C22=1/3 
would also not be possible.  Although there is no credible experimental data 
for this condition, the value shown above is a completely reasonable and 
rational physical result, and represents a general type of affirmation of the 
failure criterion. 
 
     It is well known that superimposed pressure has a profound effect on 
failure stresses.  The formulas for this effect are easily derived where p is 
taken to be the superimposed pressure.  The effects of the pressure on the 
transverse uniaxial failure stresses and the transverse shear failure stress are 
found to be given by 
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The stresses at failure are those superimposed upon the pressure state p.  
These results are for the general form for S23, (18).  The corresponding 
results for the simpler form of S23, (11), are of slightly simpler forms but the 
values resulting from the two forms of S23 are extremely close to each other 
over the normal range (21).  Again, this is consistent with the results in 
Table 1. 
 
 
     In the most important case of T22/C22=1/3 then (22) gives 
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     First note that relations (22) show that there is no effect of pressure when  
T22/C22=1, as must be the case.  Relations (22) and (23) further show that the 
pressure reinforcing effect in the uniaxial case is the same for compression 
as for tension.  Even though the tensile strength may be much less than the 
compressive strength, the reinforcing magnitude depends only upon the 
increment in pressure.  This is in accordance with experience.  Lastly, the 
size of the typical reinforcing effect, as in (23), is large, not negligible.  This 
would seem to be appropriate to this class of behavior which exhibits large 
P22 strengths. 
 
     There is no need to independently verify the fiber controlled failure 
criterion (2).  It has been employed for many years on a completely 
satisfactory basis.  There has always been much speculation that the fiber 
direction failure stress should be coupled with some of the other stress 
components.  But the derivation of (2) showed that this is not the case.  The 
original, intuitive preference for the simple maximum stress form is also the 
rigorous form that emerges from the polynomial invariants method for high 
stiffness and high strength fiber composites. 
  



Conclusions 
 
     The matrix controlled failure criterion sensitivity to the  
relative sizes of S23, T22, and C22 is a very real, physically inherent, and 
totally determinative characteristic for fiber composite materials.  The 
interrelationship between these properties is brought into greatest clarity 
through Fig. 1.  The physically permissible range of variation for S232  extends 
only from (T22C22)/4 to (T22C22)/3.  It would be virtually impossible to 
experimentally determine S23 to the required accuracy within these narrow 
limits.  It is necessary to use theoretical mechanics to find the functional 
relationship between S23 and T22 and C22, as has been done here. 
 
     Perhaps for some it is surprising, even distressing, that the transverse 
shear strength is determined by the transverse tensile and compressive 
strengths.  But with further consideration, it would be surprising if it were 
not so determined.  For isotropic materials the shear strength is determined 
by the tensile and compressive strengths.  For unidirectional fiber 
composites the three transverse strengths are those for a state of transverse 
isotropy, which is a completely comparable situation, but in two dimensions 
rather than in three.  In both of these isotropic cases physical conditions 
require the above stated outcomes. 
 
     The micromechanics derived form for S23 given by (11) at T22/C22=1/3, 
and the more general form for S23 given by (18), as derived here for all 
values of T22/C22, are both shown to be useful for general applications of 
failure.  Either form not only can be but must be used in the matrix 
controlled failure criterion (1).  Either form is consistent with the usual 
experimental accuracy for properties determination and applications.  In the 
unusual situation where a particular fiber composite materials type is 
reliably known to be substantially outside the usual range for the T22/C22 
ratio given by (21), then the more general form (18) should be used. 
 
     Either of these forms for S23 reduce the total properties count for the 
failure theory to five, namely T11, C11, T22, C22, and S12.  Performing the 
difficult experiment of determining the transverse shear strength is 
extraneous and irrelevant.  The five failure properties is the same as the 
number of elastic properties for aligned fiber composites.  This balance of 
failure properties to elastic properties is completely compatible with the 
circumstance for isotropic materials where there are two elastic properties 
and two related failure properties, [1].   



 
     This five property failure theory for aligned fiber composites is of 
somewhat unusual status and significance.  It could not have been developed 
if the two property failure theory for isotropic materials had not been derived 
and verified first.  Both theories are among the few having a rational 
physical basis that inevitably lead to extraordinarily simple forms.  Most 
failure criteria for isotropic materials and for fiber composite materials are 
constituted by conjectures and data fittings and a considerable to high degree 
of complexity.  Complexity in this context is sometimes mistaken for 
sophistication. 
 
     Finally, it is observed that the matrix controlled failure form (4) for the 
transverse failure condition reduces to an especially transparent form when 
the simple S23 form (11) is substituted into it.  There results in terms of 
principal stresses, 
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It is the last term inside the brackets of (24) that allows and requires finite 
values for eqi-biaxial compressive failure.  Extremely large but not 
unlimited values for compressive P22 and very small values for tensile P22 
are the primal characteristics for highly anisotropic fiber composite 
materials.  All composites failure theories should be critically examined with 
respect to these required behaviors. 
 
     This completes the development of failure criteria for high stiffness and 
high strength fiber composite materials.  Of broader significance, it also 
effectively completes the isotropic materials failure theory since the two 
separate theories coordinate with and reinforce each other.  For both 
isotropic materials and for fiber composite materials the challenges ahead 
now shift to those of interpretations and applications in the most physically 
meaningful sense of those terms.  For isotropic materials this could mean, 
among other things, examining the ductile/brittle aspects of failure behavior 
further because such matters are so overwhelmingly important. 
 



     For fiber composite materials the way ahead is less clear.  Obviously the 
ultimate objective is to achieve the application of failure behavior to planar 
laminated forms and to all types of woven fiber forms.  Getting there is the 
problem.  Just as it was herein necessary to fully and completely understand 
isotropic material failure behavior before attempting the lamina 
(unidirectional fibers) level, so to it would be necessary to fully assimilate 
the lamina level before attempting the laminate level.  At the present time, 
the lamina level is still the barrier to further progress. 
 
     A new and carefully developed five property failure theory has been 
given here for the lamina level.  There are many other lamina level failure 
theories in various states of current development.  It would seem necessary 
that all of these lamina level theories be critically compared with each other 
before attempting to push into laminates.  To go into laminates before fully 
consummating the lamina level understanding would be ill-advised and 
could lead to yet further confusion. 
 
     That has been the continuing problem with fiber composites failure 
theory all along.  It has not proceeded by logical, careful steps of 
incremental development, each step building upon the previous ones.  
Rather, everything has been indiscriminately mixed and stirred together, 
inevitably becoming an almost undecipherable conglomerate.  The 
theoretical failure criteria program is in grave need of some developmental 
discipline.  Otherwise the composites designers and the manufacturing 
experts will completely give up on the theoretical program and proceed 
entirely without its and their help. 
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