
XVII. WHY CARBON BASED MATERIALS ARE SO 
EXCEPTIONAL AND VITAL 

 
 
Introduction 
 
     There is an old adage that says “diamonds are forever”.  Frivolous though 
it may be, there is also a kernel of truth in it.  Diamonds are composed of 
carbon, and carbon is essential to all forms of life.  Both figuratively and 
literally, carbon is the backbone of all organic chemistry including life 
sustaining DNA.  Carbon forms the backbone of most high polymers in the 
vast technology of plastics.  Carbon gives us diamonds, not only of great 
value as gems, but also of great industrial importance.  Carbon is truly 
forever.  The properties, the characteristics, and the capability of carbon in 
all its various materials forms are anything but frivolous, they are vital and 
enduring. 
 
     One could start by saying that elemental carbon is unique but that doesn’t 
say very much because all of the elements are unique, each in its own way.  
A more discriminating observation would be that of all of the solids forming 
elements, carbon is one of the few that has extremely broad usage and 
application in its purely elemental form rather than as a part of a more 
complex molecule in a compound or alloy.  This is because of the 
extraordinary mechanical properties of carbon, especially in its diamond 
form.  The other obvious major and profound materials application of an 
element in its pure form is that of silicon, unique for its electronic properties.  
Perhaps it is not too surprising to note that there will later be found to exist 
an intimate connection between carbon and silicon. 
 
      As will be shown later, diamond has an elastic modulus, E, (Young’s 
modulus) that is much greater than that of any other solids forming element 
in the Periodic Table.  Only boron and iridium have E’s even half as much 
as that of diamond.  All other elements have lower, or much lower elastic 
modulus values than half that of diamond.  Is diamond the perfect material?  
It’s supreme elastic modulus value would seem to indicate yes.  But what 
about ductility?  Diamond is certainly very brittle.  When one carefully scans 
the mechanical properties of the elemental materials in the Periodic Table, 
one finds that there essentially is a trade off between elastic modulus and 
ductility.  Diamond is the highest performer at the elastic modulus end of the 
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scale while gold is the highest performer at the ductility end of the scale.  
The price for high modulus is brittleness and the price for high ductility is 
low modulus. 
 
     What about strength?  How does it fit in with these considerations of 
elastic modulus and ductility?  The subject of materials failure, commonly 
called strength, is the prime focus of this website and the related book “The 
Theory of Materials Failure” [1].  Chapter 8 in Ref. [1] is deeply involved 
with employing the theory of materials failure to derive the associated theory 
of ductility.  
 
     The theory of materials failure is completely calibrated by the uniaxial 
tensile and compressive strengths, T and C, where for all homogeneous and 
isotropic materials 
 

 0 ≤ T
C

≤1  (1) 

 
The limits in (1) cover an enormous range of different homogeneous and 
isotropic materials types. 
 
    For the specific state of uniaxial tension, the related ductility measure is 
found to be directly given by 
 

 D = T
C

  (2) 

 
where 
 

 
D = 0 Totally Brittle
D = 1 Perfectly Ductile

  (3) 

 
Although these extremely simple results, (2) and (3), only apply to uniaxial 
tension, they are perfectly rigorous and the general theory provides the 
corresponding ductility measures for any state of stress and for any 
homogeneous and isotropic materials type. 



     It follows that strength and ductility and the elastic properties all have 
some controlling relationships and it further follows that these must in part 
originate from the constitution of the material at the atomic scale.  The 
reason for the “in part” qualification is that flaws and imperfections at all 
scales also have a controlling effect on the macroscopic strength 
characteristics of general materials.  When examining the tradeoffs between 
elastic moduli and ductility it would be extremely helpful to eliminate the 
complication of the effect of flaw structures by considering properties and 
behavior of the elements in the forms that their associated materials take, 
namely that of condensed matter.  The work here will comply with that 
specification.  If there are flaws or defects, for present purposes they will be 
taken to occur mainly at the atomic scale, such as dislocations, vacancies etc. 
 
     Thus there is no incompatibility in relating macroscopic properties, such 
as elastic modulus and ductility measures with the architecture at the atomic 
scale so long as only the elements are under consideration. 
 
     There is however one further complication that must be recognized.  This 
is that of the existence of grain boundaries.  All of the elements forming 
solid materials condense into polycrystalline aggregates.  Grain boundaries 
are also a form of materials defects that has a degrading effect on strength.  
Some elements such as carbon and silicon can also take amorphous forms 
but these also have imperfect nanostructures because their tetrahedral 
bonding cannot be formed into perfectly isotropic nanostructures in three 
dimensions. 
 
    There is only one elemental form that is free of all defects.  This is that of 
the two dimensional form of carbon known as graphene.  Graphene has 
perfect hexagonal symmetry with no grain boundaries or other defects.  This 
makes carbon the logical material as a pure element to be used for 
benchmark studies of mechanical behavior.  The comprehensive and 
ultimately authorative source for all physical and electrical matters for 
carbon is that of Dresselhaus [2] and the many other carbon related books by 
the same author. 
 
     With the above background and motivation, all of the many different 
forms of carbon will now be considered and examined in terms of their 
mechanical properties and related performances.  These various material 
forms include diamond, graphite, graphene, fullerenes, nanotubes, and 
carbon fibers. 



 
 
The Element Carbon 
 
     Carbon is the 6th element (atomic number 6) in the Periodic Table 
following hydrogen, helium, lithium, beryllium, and boron.  In general, the 
specific atomic scale characteristics show great order and regularity as the 
atomic number is increased.  But the associated physical properties are just 
the opposite, showing enormous variability and distinctions as one 
progresses along in the table.  Why are some elements gases and others are 
solids at some specified condition?  Actually, there are solids and liquids and 
gases, all existing at standard ambient conditions.  Interest here resides with 
the solids forming elements and with the physical properties that are 
normally considered to be the specific mechanical properties of stiffness and 
strength. 
 
     The first 14 elements of the Periodic Table are shown in Table 1.  The 
atomic number is the number of protons in the nucleus and the 
corresponding number of electrons orbiting the nucleus.  The electrons form 
into shells and each shell after the first one further divides into sub-shells 
having different orbital characteristics.  The elastic moduli and Poisson’s 
ratios are shown in Table 1 for the solids forming cases along with their 
crystal structures. 
  



 

Element Atomic 
Number 

Electrons 
per Shell Orbitals E 

GPa ν  Crystal 
Structure 

Gases 
H&He 1 & 2 1&2 1s1 & 1s2    

Lithium 
Li 3 2,1 1s2 2s1 5 0.43 BCC 

Beryllium 
Be 4 2,2 1s2 2s2 287 0.13 HCP 

Boron 
B 5 2,3 1s2 2s2  2p1 450 0.27 Rhombohedral 

Carbon 
C 6 2,4 1s2 2s2 2p2 1,050 0.20 Diamond Cubic 

Gases 
N, O, F, Ne 7-10 2,5 to 2,8 [Be]2p3 to 

[Be]2p6    

Sodium 
Na 11 2,8,1 [Ne]3s1 10 0.24 BCC 

Magnesium 
Mg 12 2,8,2 [Ne]3s2 45 0.29 HCP 

Aluminum 
Al 13 2,8,3 [Ne]3s2 3p1 70 0.35 FCC 

Silicon 
Si 14 2,8,4 [Ne]3s2 3p2 170 0.22 Diamond Cubic 

 
 

Table 1   Elements and properties 
  



    Carbon stands out in Table 1 as having the largest elastic modulus value.  
When examining the entire Periodic Table, carbon still remains as having 
the largest elastic modulus when in its diamond cubic form.  It not only 
stands out,  it stands far above the second largest modulus material, boron, 
by over a factor of 2.  In the broad sense of the term, carbon is singular in its 
diamond form, it has no competition.  If the moduli values are divided by 
their related density, carbon still retains its dominant position. 
 
     Necessarily there is some uncertainty for some of the E and !  values in 
Table 1.  The properties for lithium and sodium as well as beryllium and 
boron are especially variable (uncertain) based upon many different reported 
values.  But the supremacy of the elastic modulus of diamond is not in any 
doubt. 
 
     The distinctions and variability’s in the physical properties of the 
elements tie in with the orbital characteristics.  In Table 1 the s orbital is that 
where the electron can exist anywhere in the spherical region of the 
corresponding shell.  The 1st shell is full when occupied with 2 electrons and 
after that the second shell begins to be filled.  The second shell is full when 8 
electrons are present and after that the 3rd shell is formed and so on. 
 
    The orbitals in Table 1 contain not only the s orbitals but also the p 
orbitals.  The notation in Table 1 designates the shell number as the 
coefficient of s or p and the superscript of s or p is the number of electrons in 
the orbital of the sub-shell.  The p orbitals are more complicated than the s 
orbitals.  The simplest p orbital has 2 lobes in a figure 8 form, rotated about 
its long axis.  It can contain 1 or at the most 2 electrons.  Thus it inherently 
designates directionality.  The next more complicated p orbital adds 2 more 
lobes orthogonal to the first 2. And it thus can contain 2 to 4 electrons and it 
defines a planar orientation.  Finally there can be a p orbital with 6 lobes, 
which then is three dimensional.  It is seen from Table 1 that carbon has a p3 
orbital and thus it may be able to take a planar form in its related bonding 
with other carbon atoms.  This suggests a planar form of carbon, and such an 
entity does exist, it is graphene.  Thus carbon can take the diamond cubic 
crystal form in 3 dimensions or the graphene planar form in 2 dimensions 
with hexagonal symmetry. 
 
     For the elements in Table 1 of atomic numbers from 7 to 14 the orbital 
notation uses the symbols [Be] and [Ne] to designate the partial shell 
configurations of beryllium and neon as being inside those of the orbitals 



shown.  It should be noted that silicon, as with carbon, contains a p2 orbital 
but it has a much more complicated inner shell architecture, also containing 
an inner p6 orbital.  There is no evidence that silicon can support a 2 
dimensional material form as exists with graphene. 
 
     These sub-shells with their complex orbitals were deduced through 
quantum mechanics.  It was the triumph of quantum mechanics to put this 
order into the probabilistic description of the electrons existence and their 
interactions with the other electrons.  Much more complicated orbitals are 
involved for the atomic numbers above those shown in Table 1. 
 
     The Poisson’s ratios in Table 1 do not show any apparent ordering or 
comparative predictability.  They are determined by the extremely complex 
forms of the electrons interacting in the fields created by all of the orbitals. 
 
     So the diamond cubic form of carbon stands out in Table 1 and it stands 
out in the entire Periodic Table.  The 2 dimensional carbon form of graphene 
can also at least be rationalized from the atomic structure of carbon.  This 
then opens the door to all of the standard forms of carbon including 
fullerenes, and nanotubes.  Fullerenes are the spherically curved form of 
graphene and nanotubes are the cylindrically curved forms of graphene. 
 
     Going even further, it is recognized that graphite is the common form of 
graphene with the weak van der Waal’s attractive forces acting between the 
planes of graphene.  Necessarily graphite, as it is normally and naturally 
found, is dominated by its defects.  Carbon fibers obviously have related 
microstructures that will be taken up later. 
 
     Finally, the subject of strength must be introduced.  The ideal theoretical 
strength is often taken to be E/10.  This suggests that carbon, and 
specifically diamond has very high values of strength.  However, the subject 
of strength is far more complex than that of merely having a few simple 
rules and formulas.  Consideration of strength for the various forms of 
carbon will also be taken up in the following work. 
 
The following work will largely be focused upon diamond and graphene, as 
representing the 3 dimensional and 2 dimensional forms that carbon can 
take.  High attention will be placed upon the elastic properties for diamond 
and graphene and how these relate to atomic structure and how these then 
lead to considerations of strength. 



 
 
2D and 3D Elastic Properties and Their Limits 
 
     For homogeneous and isotropic materials the usual elastic properties are 
E and ν  and/orµ  and k, with the latter two being the shear and bulk 
moduli.  Only 2 of these properties are independent.  The usual identities 
relating the 2 pairs of 2 properties are given by 
 

 µ = E
2 1+!( )   (4) 

 
and 
 

 k =
E

3 1− 2ν( )   (5) 

 
     The requirement of positive stored energy gives the limits on Poisson’s 
ratio as being 
 

 −1≤ν ≤ 1
2

  (6) 

 
Then it follows from (4) and (5) that: 
 

For !1 "# "
1
2

  

 

 
E
3
≤ µ ≤ ∞ and E

9
≤ k ≤ ∞   (7) 

 
Thusµ  and k can take a wide range of values, including being of unlimited 
size compared with E. 
 



     Negative values for Poisson’s ratios have never been reported for any of 
the elements.  Under this circumstance then tighter restrictions onµ  and k 
follow as: 
 

For 0 ≤ν ≤ 1
2

  

 

 
E
3
≤ µ ≤ E

2
and E

3
≤ k ≤ ∞   (8) 

 
In fact, for homogeneous materials no credible negative values forν  have 
ever been reported and gained acceptability. 
 
     For possible application to the elements in general and to diamond in 
particular, the restrictions (8) must be qualified to apply to polycrystalline 
aggregates since the diamond cubic crystal is anisotropic.  For some 
elements including diamond there is an amorphous form that preserves the 
tetrahedral bonding of the carbon atoms but necessarily brings in defects at 
the nano-scale.  So the isotropic forms (7) and (8) apply to either the 
polycrystalline or amorphous forms of diamond. 
 
     Before interpreting the restrictions (7) and (8) it is necessary to develop 
the corresponding forms for 2D elasticity that allow application to graphene.  
Since graphene is only one atomic dimension in thickness it cannot be 
treated as being part of three dimensional elasticity theory.  The 
corresponding 2D elastic moduli must have units of force per unit length, 
rather than force per unit area.  The identities for 2D  elasticity 
corresponding to (4) and (5) are 
 

 µ2D = E2D

2 1+ν2D( )   (9) 

 
and 
 

 K2D = E2D
2 1−ν2D( )   (10) 



The requirement of non-negative stored energy gives the restrictions on 2D 
Poisson’s ratio as 
 
 −1≤ν2D ≤1  (11) 
 
This is the 2D counterpart of the 3D restriction (6). 
 
      Combining (8) – (10) gives the 2D restrictions on µ2D  and K2D  as: 
 
For −1≤ν2D ≤1  
 

 
E2D

4
! µ2D ! " and

E2D

4
! K2D ! "   (12) 

 
     Again, corresponding to 3D elasticity there is no credible evidence that 
graphene has a negative Poisson’s ratio so it follows that: 
 
For 0 ≤ν2D ≤1 
 

 
E2D
4

≤ µ2D ≤ E2D
2

and E2D
2

≤ K2D ≤ ∞   (13) 

 
     Some interesting conclusions follow from the 2D and 3D comparisons of 
(8) and (13).  First for the 2D case, it is seen that the two expressions in (13) 
coordinate perfectly with each other.  That is, the ranges of applicability are 
completely complementary.  It follows from (13) that for non-negative 2D 
Poisson’s ratio 
 
 µ2D ! K2D for "2D # 0   (14) 
 
Relation (14) is a legitimate physical interpretation for the meaning of non-
negative 2D Poisson’s ratio.  The shear modulus must be smaller than the 
2D bulk modulus. 
 
In contrast, for the 3D properties in (8) there is overlap between the limits 
for µ  and k.  From (8) there follows that 



 µ ≤ 3
2
k for ν ≥ 0   (15) 

 
There is no obvious and reasonable physical interpretation for (15).  The 
reduced ranges for µ  and k in (8) compared with (7) could not be deduced 
independently and could only come from imposing the restriction 

0 ≤ν ≤ 1
2

 .  It follows that µ  and k are not the fundamental forms for 3D 

elastic properties, rather E and ν  are the fundamental property forms for 
homogeneous and isotropic materials, and the non-negative requirement for 
ν  is also a stand alone, meaningful restriction. 
 
     This elementary introduction to the significance of Poisson’s ratio will 
later be superseded by reference to more sophisticated and insightful work 
on its true meaning.  But for now, this serves the purpose of showing that 
Poisson’s ratio is of pivotal importance.  It is much more than just a routine 
mechanical property of only secondary importance.  It is both the elastic 
modulus E and the Poisson’s ratio ν  that will be of importance and 
significance for both of the major forms of carbon based materials, namely 
diamond and graphene. 
 
 
Renormalized Poisson’s Ratio 
 
     With the understanding that homogeneous and isotropic materials do not 
allow the existence of negative 2D and 3D Poisson’s ratios, some further 
consequences can be established.  Following Ref. [3] it is advantageous to 
renormalize elasticity theory.  With background from [3], the elastic 
modulus E and Poisson’s ratio ν are replaced by the renormalized forms 
specified by 
 

 E* = E
1+ν

  (16) 

 

 ! * = 3!
1+!

  (17) 

 



For ν  satisfying the non-negative restriction 
 

 0 ≤ν ≤ 1
2

  (18) 

 
then ν *  also satisfies 
 
 0 ≤ν * ≤1  (19) 
 
     With the renormalized properties (16) and (17) the elastic energy takes 
the especially simple form 
 

 U = 1
2E*

1−ν *( )
3

σ ii
2 + sijsij

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (20) 

 
where sij  is the deviatoric stress 
 

 sij =σ ij −
δ ij

3
σ kk   (21) 

 
     Before examining these results the corresponding renormalized 2D 
elasticity theory should be recorded.  It is given by the renormalized 
properties 
 

 E2D
* = E2D

1+!2D

  (22) 

 

 ν2D
* =

2ν2D

1+ν2D

  (23) 

 
where 
 
 0 !"2D !1   (24) 



 0 !"2D
* !1   (25) 

 
The resulting energy is given by 
 

 U =
1

2E2D
*

1−ν2D
*( )

2
σ ii
2 + sijsij

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (26) 

 
where now sij  is the two dimensional deviatoric stress given by 
 

 sij =σ ij −
δ ij

2
σ kk , 2D   (27) 

 
and where in 2D the related indices are 1 and 2 only. 
 
     Next (20) and (26) will be specialized to the case of uniaxial stress.  First 
for the 2D elasticity case there results from (26) 
 

 
U = 1

4E2D
* 1−ν2D

*( ) +1⎡⎣ ⎤⎦σ 11
2

dilatational ↑ ↑ distortional
  (28) 

 
     The character of the energy changes completely over the range of 
possible renormalized Poisson’s ratio in (25) as follows: 
 
(i)     For ν2D

*  = 1 there is no dilatational contribution to the energy. 
 
(ii)     For !2D

*  = 0 the dilatational contribution to the energy is maximized 
and also balanced with that from the distortional source. 
 
     The situation with the 3D elasticity case is somewhat different.  From 
(20) for uniaxial stress there results 



 
U = 1

3E*
1
2
1!" *( ) +1#

$%
&
'(
) 11
2

dilatational * * distortional
  (29) 

 
In this case the conclusions are: 
 
(i)    For ν *  = 1 there is no dilatational contribution to the energy. 
 
(ii)   For ν *  = 0 the dilatational contribution to the energy is maximized but 
it is not in balance with that from the distortional source. 
 
     In comparing the 2D and 3D cases it is seen that they are generally 
similar but the 2D case has an appealing internal symmetry between the 
dilatational and distortional sources of energy that the 3D case does not 
share and possess.  As with the results in the previous section, the 3D case is 
considerably more complex than the 2D case, even on the fundamental 
sources of the energy. 
 
     These results will later be specialized to the 2D case of graphene and the 
3D case of diamond.  Also, the renormalized properties formulation will be 
needed in the next section.  
 
 
Nanomechanics 
 
     With the knowledge that only the element carbon can form a two 
dimensional continuum of atoms, it is logical to examine this carbon  
constituency from the atomic scale on up.  Graphene is the planar hexagonal 
bonding of carbon atoms.  This program was followed in Refs. [4] and [1] 
and termed to be the nanomechanics of graphene. 
 
     The bonding of two carbon atoms is as shown in Fig. 1. 



 
 

Fig. 1   Bonding of two carbon atoms 
 
 
The bonding is represented by an equivalent elastic member with the 
dimensions shown in Fig. 1.  The bond bending and bond stretching 
stiffnesses are designated by kB and kA and their ratio is specified by 
 

 κ = kB
kA

  (30) 

 
Using two dimensional forms it follows that 
 

 κ = d
l

⎛
⎝⎜

⎞
⎠⎟
2

  (31) 

 
The nanoscale analysis [4] of the hexagonal arrangement of atoms yields the 
macroscopic elastic properties as 
 

 E2D = 4κ
3 1+ 3κ( ) kA

  (32) 

 



 ν2D = 1−κ
1+ 3κ

  (33) 

 
  It is the Poisson’s ratio form (33) that will prove to be very useful for 2D 
graphene.  In Ref. [4] a 3D form for all isotropic materials was derived as 
the counterpart of (33) giving 
 

 ν = 1−κ
2 +κ

  (34) 

 
where κ  is still given by (30) and (31) but now it represents a rescaled form 
appropriate to 3D conditions, [3]. 
 
     The Poisson’s ratio form (33) is representative of a specific materials 
type, graphene, whereas the form (34) applies to all homogeneous and 
isotopic materials types.  In both cases the controlling variable is κ  the ratio 
of the bond bending stiffness to the bond stretching stiffness for whatever 
element/material is under consideration.  The macroscopic property !  is 
solely controlled by this single nanoscale property κ . 
 
     The two expressions, (33) and (34) can now be expressed interms of the 
appropriate renormalized Poisson’s ratios.  Using (23) and (17) then 
converts (33) and (34) to 
 

 !2D
* =

1"#
1+#

  (35) 

 
and 
 
 ν * = 1−κ   (36) 
 
     Both forms (35) and (36) are of significance but (36) is especially 
important.  The nanoscale property !  is linearly related to the macroscopic 
property form ! *  as shown in Fig. 2. 
 
 



 
 

Fig. 2   Macro-scale ! *  versus nano-scale ! , (36) 
 
 
The character of the diamond form of carbon stands out in Fig. 2.  Almost all 

of the elements reside in the region of 
1
2
≤ν * ≤1 in Fig. 2.  Furthermore, 

most homogeneous and isotropic materials exist in the same region.  Only 
the element beryllium and perhaps some ceramics reside in the lower half of 
the region for ! *  shown in Fig. 2. 
 
     The value of ! *= 1/2 corresponds to the value ! = 1/5.  Although there 
is considerable uncertainty about the experimental values reported for 
diamond, the value ! = 1/5 does seem to be near the most commonly 
reported values for polycrystalline diamond and for amorphous diamond. 
 
     It follows that the Poisson’s ratio for diamond lies at or near the extreme 
lower limit for most materials.  Thus carbon in its diamond form not only 
exhibits the most extreme and maximal value for its elastic modulus, E, its 
Poisson’s ratio also exhibits near extremal behavior.  This characteristic is of 



great significance because ν *and thereby ν  gives a window on the nano-
scale properties of materials.  In particular, through the relation of ! *and !
, (36), the value of !  = 1/2 signifies that of diamond and then (30) gives the 
corresponding ratio of the bond bending stiffness to the bond stretching 
stiffness for the carbon atom.  As seen in the previous section this 
characteristic also corresponds to maximizing the dilatational contribution to 
the total energy compared with that which comes from the distortional 
source (for most materials). 
 
     Although it is not needed here, it should be noted that in Ref. [4] the 
nano-scale relation between ! *and κ  was used to prove that Poisson’s ratio 
can never be negative for homogeneous and isotropic materials.  This 
resolves a long standing historical ambiguity, uncertainty, and even 
controversy.  
 
 
Poisson’s Ratio for Diamond and Graphene    
 
     Now a different approach will be taken to establishing the Poisson’s 
ratios for diamond and for graphene.  This will be different from anything 
ever followed before and different from simply appealing to reported 
experimental values, as was done in the previous section and in [4]. 
 
     This inquiry into the Poisson’s ratios of diamond and graphene begins by 
asking if the nano-scale form of graphene and the 3D form of diamond have 
some special compatibility and relationship since both involve the bonding 
of carbon atoms.  And if such a special relationship does exist, how can it be 
used to advantage?  The ratio of stiffnesses  in ! ,(30), is not simply a nano-
scale property, is most fundamentally an atomic scale property since it 
represents the covalent bonding of two carbon atoms in immediate 
proximity. 
 
     The next question would be to ask what macroscopic property could 
possibly be determined by !  and only by κ ?  It must be a nondimensional 
property since κ  is nondimensional.  Poisson’s ratio is the only 
nondimensional mechanical property that could conceivably fill this role. 
 
     As already noted in (33) and (34), the nano-scale theory of Ref. [4] 
predicts that for graphene 



 

 ν2D = 1−κ
1+ 3κ

} Only for carbon in graphene   (37) 

 
whereas for the general 3D case for any material 
 

 ! = 1"#
2 +#

} Any element   (38) 

 
     In the special case of carbon in (38) it then follows from the previous 
discussion and deduction that 
 
 ν carbon

diamond
= ν2D carbon

graphene
  (39)  

 
Substituting (37) and (38) into (39) gives 
 

 
1−κ
2 +κ

= 1−κ
1+ 3κ

  (40) 

 
further determining that 
 

 ! =
1
2

  (41) 

 
Then (41) into (37) and (38) gives the final result that for diamond and for 
graphene 
 

 ! = !2D =
1
5

  (42) 

 
    Thus Poisson’s ratio !  for diamond is one of the few mechanical 
properties that can realistically be determined from a´ priori theoretical 
requirements rather than from direct experimental observation.  And the 
close compatibility of this deduction with the experimental results provides 
further corroboration and reassurance on the general theory. 



 
     In using the equality of ν  and ν2D  in (39) it was the only logical choice.  
E and E2D could not be used for this purpose because they are dimensional 
and what’s more, they don’t even have the same dimensions.  The other 
choice would have been to use ! *  and ν2D

*  but they are not basic materials 

properties, but rather are derivative forms from ν and ν2D . 
 

     The determination that ν = ν2D =
1
5

 thus  completes the 

characterization for diamond.  Its elastic modulus E is by far the largest of 
any element in the Periodic Table.  Its Poisson’s ratio !  is one of the 
smallest of any element in the Periodic Table.  This maximizes or nearly 
maximizes the stiffening mechanism that comes from the dilatational source 
of resistance.  Its dilatational resistance is quite well balanced with its 
distortional resistance.  Higher values of Poisson’s ratio move toward 
relying just on the distortional resistance mode. 
 
     Carbon is unique in allowing the formation of the two dimensional 
continuum, graphene.  The three dimensional form of carbon in diamond is 
also unique for the mechanical properties that it embodies. 
 
 
Stress-Strain and Failure  
 
     This final section will first examine the elastic stress-strain behavior for 
diamond and for graphene.  Then failure will be taken up, first for diamond.  
Finally the failure behavior for all forms of carbon materials will be 
considered, for graphene, graphite, nanotubes, carbon fibers and carbon 
composites. 
 
     In the case of diamond, its stress-strain characterization starts with that in 
terms of the renormalized elastic properties, E* and ν * , and it is given by 
 
 

 ! ij =
1
E* " ij #$ *% ij" M&' ()   (43) 

 



where σ M is the mean normal stress.  This form corresponds to the energy 
form (20).  In the case of diamond, the Poisson’s ratio was established to be 
ν  = 1/5 in the last section.  From (17) the renormalized Poisson’s ratio is 
then 
 

 ν * = 1
2

Diamond   (44) 

 
Using (44) in (43) then gives 
 

 ε ij =
1
E* σ ij −

δ ij

6
σ 11 +σ 22 +σ 33( )⎡

⎣⎢
⎤
⎦⎥

  (45) 

 
      Next the corresponding results for graphene will be given.  The general 
2D elasticity stress-strain form is 
 

 ! ij =
1
E2D

* " ij #$2D
* % ij" M&' ()   (46) 

 
where ! M is still the mean normal stress, but now in 2D form.  The 2D form 
(46) corresponds to the 2D energy form (26).  The Poisson’s ratio for 
graphene from the previous section is ν2D= 1/5 so then from (23) the 
renormalized value of it is 
 

 !2D
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1
3

  (47) 

 
     Combining (46) and (47) gives 
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     Comparing (45) and (48) for diamond and graphene, they are identical 
except that the former is 3D and the latter is for 2D.  Also it must be 
recognized that E*and E2D

* for diamond and graphene respectively are 
different. 
 
     To go one step further, consider the three stress states of uniaxial stress, 
eqi-biaxial stress, and eqi-triaxial stress, all designated by ! .  In the case of 
diamond, (45) gives 
 

 

Uniaxial ! =
6
5

E*" = E"

Eqi # Biaxial ! =
3
2

E*" =
5
4

E"

Eqi # Triaxial ! = 2E*" =
5
3

E"

  (49) 

 
     The first two forms in (49) are also applicable to graphene with E*  
replaced by E2D

*  and E  replaced by E2D .  The third form for the eqi-
triaxial condition in (49) has no counterpart for graphene. 
 
     In considering failure, first the case for diamond will be taken up.  This 
will be for isotropic diamond in either polycrystalline or amorphous form.  
The failure criterion is 
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  (50) 

 
where 
 

 !̂ ij =
! ij

C
  (51) 

 
and with T and C being the uniaxial tensile and compressive failure stresses.  
The competitive fracture criterion is 
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C

if T
C
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  (52) 

 
where ! 1  is the maximum principal stress. 
 
In using (50) and (52) the uniaxial strengths ratio T/C must be specified.  
Although it is difficult to find data on the same diamond types for both T 
and C, there is common agreement that the value for T is much smaller than 
that for C due to the inherent flaw structures present in such brittle materials.  
The T/C values for diamond probably are quite similar to those for glass and 
higher quality geological materials.  This would put the T/C value for 
diamond about in the range 
 

 
1
20

≤ T
C

≤ 1
10

  

 
For the purpose of a specific example take 
 

 
T
C

=
1
15

Diamond   (53) 

 
     It is the failure criterion (50) not (52), that controls behaviors for these 
stress states and the six failure stress levels are found to be given by 
 

 

Uniaxial !̂ = 0.0667 and "1
Eqi " Biaxial !̂ = 0.0351 and "1.90
Eqi "Triaxial !̂ = 0.0238 and " #

  (54) 

 
The progression to more critical tensile stress states and to more tolerant 
compressive stress states is evident in (54) as one moves from uniaxial to 
biaxial and finally to triaxial conditions. 
 
     The situation with failure characterization for graphene is more 
problematic.  In considering the possible application of a 2D failure criterion 



like (50) to graphene, it would be necessary to measure the compressive 
strength C.  It is not at all clear how this should be done when the continuum 
is actually an extremely thin layer of only one carbon atom in thickness.  
More generally, engineering materials have strengths that are predominately 
controlled by the existence and distributions of flaws, defects, and 
irregularities.  To start with, graphene is not an engineering material and by 
definition it has no defects.  Graphene is the perfect arrangement of carbon 
atoms in its natural hexagonal pattern.  It does not appear to be possible to 
use the typical mechanics approaches to failure characterization for 
graphene.   
 
    This uncertainty or difficulty does not mean that graphene is exempt from 
failure.  Of course any type of atomic bonding between neighboring atoms 
can be loaded up to the point at which the bonds fail.  It probably is most 
useful to think of graphene as being loaded in a state of uniaxial tension or 
eqi-biaxial tension, at least when probing the limits of its ability to carry 
load.  In this case it is not necessary to employ a failure criterion.  The 
failure stress is a scalar, not a tensor, and no multi-dimensional failure 
criterion is needed. 
 
     The testing of graphene was performed by Lee et al [5].  The technique 
used the atomic force microscope involving nanoindentation with the 
graphene layer suspended over an open hole.  As expected the graphene 
monolayer exhibited abnormally large modulus and strength with large 
strains before failure.  Although the general stress-strain behavior was 
nonlinear, the initial linear range used and accommodated a Poisson’ ratio of 
0.165, [5]. 
 
     Because graphene exhibits large strain in tensile failure, it would 
normally be considered to be ductile.  Now in previous work, [2], ductility 
was found to strongly correlated with Poisson’s ratios for 3D materials.  The 
value of  ν2D  = 1/5 would seem to indicate a brittle behavior for graphene.  
However, the error in following that line of reasoning is as follows.  The 
correlation between the degree of ductility and Poisson’s ratio is for 3D 
materials where ductility is primarily influenced by inherent flaws and 
defects in the material.  But graphene is a perfect 2D material and not at all 
controlled by the same influences that exist with 3D engineering materials, 
or even with some natural materials as polycrystalline diamond.  Graphene 
is in a class by itself as regards materials strength and ductility. 



 
     The comparison between diamond and graphene reveals the full range of 
behaviors for each and for both in comparison.  Both have superior elastic 
modulus since that property is most directly controlled by the inherent 
properties of the atomic carbon capability.  However, strength is where 
diamond and graphene become differentiated.  Graphene with its perfect 
nanostructure has a strength capability commensurate with its elastic 
modulus.  Diamond type materials have tensile strength characteristics that 
are greatly degraded by the flaw structures that exist at all scales.  Grain 
boundaries and other defects exist in polycrystalline diamond while nano-
scale and larger defects exist in amorphous diamond.  The strength 
characteristics shown in (53) and (54) directly reflect the degraded tensile 
strength capability of diamond. 
 
     In addition to diamond and graphene, other forms of carbon include 
fullerenes, nanotubes, and carbon fibers.  Fullerenes and nanotubes are the 
spherical and cylindrical forms of graphene.  They are generally taken or 
idealized to be defect free and thus have the same capability as that inherent 
in graphene.  The properties would be a little different than those in 
graphene because the bonds in the natural state are deformed to admit the 
curvature in the two cases.  Multi-walled nanotubes add further 
complications but it still retains its relationship to the essential properties of 
graphene.  There is much work transpiring to bring these forms of fullerenes 
and nanotubes into the realm of practical, cost effective application. 
 
     Carbon fibers are the form of carbon that has made the most spectacular 
advancements in load bearing applications in recent times.  It is dominant 
when the physical conditions of application require high stiffness and high 
strength at minimal weight.  But it isn’t just the fibers, as a single entity, that 
enables this performance. It is the full partnership of the carbon fibers as 
embedded in polymeric matrices that produces this nearly unique composite 
material capability.  And the polymeric matrices, such as epoxy at ordinary 
temperatures and polyimides at elevated temperatures, are in fact carbon 
based themselves.  Virtually all polymers are carbon based.    
 
     By themselves the individual carbon fibers have extreme variations in 
their strength capabilities with the lower ranges being completely 
unacceptable.  But in union with the polymer matrix which bridges across 
fiber flaws, defects and local misalignments, very high levels of stiffness and 
strength can be obtained from the combined composite material.  



Furthermore the presence of the polymeric matrix phase imparts much 
needed ductility properties to the composite that would otherwise be 
severely lacking.  Carbon fibers by themselves are extremely brittle. 
 
     Yet another form of a carbon based material must be mentioned.  That 
would be graphite.  Graphite is essentially “low tech” graphene.  The basal 
planes in graphite are simply single layer graphene.  The graphene layers are 
bonded by weak van der Waals forces to form graphite.  Although graphite 
is common and abundant, it is permeated by flaws and defects.  It is also 
extremely anisotropic.  Fused graphite contains weak grain boundaries that 
also are limiting.  When one considers the spectrum of carbon based 
materials and looks for their aspects of physical commonality one sees that 
carbon fibers are more or less composed of the graphite architecture but with 
extremely high temperature forming so that the material at the micro-scale is 
continuous or semi-continuous.  That is, the basal planes of graphite are 
more nearly continuous, Dresselhaus [2].  This continuity or semi-continuity 
of the basal planes imparts the superior properties of carbon fibers. 
 
     Although carbon fiber nanostructure and microstructure have progressed 
extremely rapidly over the past 40 or 50 years, there likely is still 
considerable opportunity for advancement, both in performance levels and 
cost of manufacture.  There is an ever increasing requirement and demand 
for high performance materials that are light weight.  The traditional 
material form that most nearly fits this picture is aluminum. Perhaps this is 
partially due to its relatively low atomic number,  aluminum is 13 but carbon 
is even lower at 6.  The “new” material form for the same purpose is carbon 
fiber composites.  Carbon fiber composites have superior strength and 
stiffness compared to those of aluminum and at a considerably lower 
density.  But it costs much more than aluminum to manufacture and to 
process.  So the race is on. That notwithstanding, there will be no losers.  
There will only be advancements on all fronts with exciting and useful new 
materials capabilities for and from both carbon fibers and aluminum, as well 
as from many other materials types. 
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