
III. FAILURE CRITERIA FOR ANISOTROPIC 
FIBER COMPOSITE MATERIALS 

 
 
     The anisotropic materials types to be considered here will be taken to have 
transversely isotropic symmetry.  Perhaps the best known example is that of 
aligned fiber composite materials, but there are many other examples.  A further 
condition will be taken such that the degree of anisotropy is large.  This is in 
line with the interests here in high stiffness and high strength fiber composite 
materials as typified by carbon fiber, polymeric matrix systems.  Such materials 
will be referred to as carbon-polymer systems. 
 
     It is necessary to deduce the proper scale for the corresponding idealization 
of homogeneity for this class of materials failure problems.  There are three 
obvious choices.  The so called micromechanics level takes the individual fibers 
and the separate matrix phase in between them as the size scale for 
homogeneity.  The next level up is the aligned fiber, lamina level, which then is 
much larger than the size of the individual filament or fiber.  Finally, at yet a 
still much larger scale, the homogenization could be taken at the laminate level, 
involving the stacking of various lamina in various directions.  It is the 
intermediate scale, the lamina level that is seen as having the proper balance 
between small scale detail, but large enough scale to include all the possible 
failure mechanisms which could  be operative.  An example of the importance 
of the scale of the failure mode will be given later.  Thus all idealizations to 
follow are taken at the aligned fiber, lamina scale of homogenization.  This is 
the same scale as that at which the volume averaged elastic properties for fiber 
composites are normally rationalized. 
 
     The main purpose here is to develop the highly anisotropic failure criterion 
(for carbon-polymer systems) which is the companion piece to that of the 
isotropic case given in the previous section.  To this end, take a polynomial 
expansion of the stress tensor through terms of second degree for transversely 
isotropic symmetry.  Such an expansion will involve the following seven terms 
composed of the four basic invariants for this symmetry and the three quadratic 
combinations of the two linear invariants, 
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Axis 1 is the axis of symmetry (fiber direction) and axes 2 and 3 form the plane 
of two dimensional isotropy. 
 
     The condition of high anisotropy will be taken for both stiffness and 
strength, thus for the moduli 
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where E11 is the usual modulus in the fiber direction and  E22 is the transverse 
modulus.  For strengths, take T11 and C11 as the uniaxial tensile and 
compressive strengths in the fiber direction and T22 and C22 as the 
corresponding strengths in the transverse direction.  The highly anisotropic 
strengths are specified by 
 
 
 

! 

T11
T22

>> 1      (3) 

 
 
and 
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 The lamina level strength properties that are conventionally measured by 
standard tests are the six following as 
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T11 , C11 , T22 , C22 , S12 and S23   (5) 
 
 
 
where the T’s and C’s are already defined and S23 is the transverse shear 
strength while S12 = S31 is the longitudinal or axial shear strength.  The 
conditions of high anisotropy also imply that S12 and S23 are of much smaller 
size  than are T11 and C11. 
 
     With this terminology and the highly anisotropic stiffness and strength 
conditions, the failure criteria can now be formulated.  The failure will be found 
to naturally decompose into two separate modes. 
 
    First consider the conceptual limiting case of rigid fibers.  Insofar as the 
matrix phase is concerned, the physical state would be that of plane strain or  
alternatively that of out of plane shear deformation.  For these stress states the 
effective macroscopic stresses controlling failure in the matrix phase would be 
those of the stresses in the 2-3 plane and the out of plane shear stresses.   
 
     For the cases of interest here where the fibers are not rigid but still are very 
stiff, (2), the stress forms resulting in matrix failure are taken to be the same as 
those in the above limiting case.  The physical rationale for this is as follows.  
The anisotropic moduli ratio varies as 0 ! E22/E11 ! 1.  The “0” limit is the 
plane strain case and the “1” limit is that of isotropy.  Just as a value of 
E22/E11 = 0.9 would have the isotropic case as a close and reasonable 
representation, so too the conjugate value of E22/E11= 0.1 would have the plane 
strain form as a close and reasonable representation.  The value E22/E11= 0.1 or 
even considerably smaller values are well descriptive of typical carbon-polymer 
systems.   
 
    Taking the terms in (1) with these 2-3 plane components of stress  and the out 
of plane shear stress components then gives the polynomial expansion as being 
comprised of the second, fourth, sixth and seventh terms in (1).  This gives the 
matrix controlled failure criterion as, 
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    Evaluating parameters ", #, $, and % in (6) to give failure calibrated by the 
strength properties in (5) then gives the resulting failure criterion as : 
 
Matrix Controlled Failure 
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For (7) to always have real roots it is necessary that 
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S23 " 1
2 T22C22 . As with 

isotropic materials it is commonly found that T22 < C22  from tests.  In Section 
IX micromechanics is used to express S23 in terms of T22 & C22. 
 
     The form (7) controls one of  the two modes of failure.  The other possible 
mode of failure is that of fiber controlled failure.  It could be tempting to 
assume that this means that fiber failure itself is the limiting failure mechanism.  
Such is not usually the case however.  The problem is far more complex and 
subtle than that.  Consider for example the compressive failure due to stress in 
the fiber direction, &11.   The formation of kink bands is usually the failure 
mechanism.  With the high fiber stiffness, relation (2), the compressive failure 
mechanism is kink band formation with almost no deformation in the fiber 
direction, but the kink mechanism causes high shear stress in the matrix phase.  
The kink band formation occurs at the lamina scale, not the smaller scale, nor 
the larger scale.  The kink occurs suddenly as an instability which has the stress 



&11 as proportional to the axial shear modulus.  Even though the basic 
mechanism is that of an instability involving matrix deformation, it is still 
legitimate  to designate this as fiber controlled failure since the high fiber 
stiffness plays an essential role, and the large failure stress is certainly related to 
the large fiber modulus.  The situation with axial tensile failure is similarly 
complex with fiber breaks and fiber misalignment playing  crucial roles.  The 
Rosen model includes some of these effects in a two dimensional idealization. 
 
     The second mode of failure necessarily involves the other terms in (1) that 
are not part of the matrix controlled failure, (7).  These terms are then those of  
 
 

! 

"11 , "11
2 , "11(" 22 +" 33)     (8) 

 
 
The large degree of anisotropy in strengths, (3) and (4), dictates that the fiber 
controlled failure envelope have stress states with &22 and &33 being much 
smaller  than &11.  With this condition, then the last term in (8) is negligible (but 
not vanishing) compared with the first two terms.  Writing the  first two terms 
in failure criterion form and evaluating the two parameters in terms of the 
strength properties in (5) gives the resulting failure criterion as : 
 
Fiber Controlled Failure 
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or simply 
 

! 

"C11 # $11 # T11     (9b) 
 
 
In contrast to the matrix controlled failure situation, it is commonly found that 
C11< T11. 
 



     The decomposed failure criteria (7) and (9) are completely calibrated by the 
six standard strength properties in (5).  The fact that the fifth term of the 
expansion in (1) involving &11(&22+&33) does not enter either of these failure 
criteria is not an assumption, but rather the result of the rigorous derivation.  
 
     The background on the development of failure criteria (7) and (9) is as 
follows.  The general outline of the method given here is similar to that 
developed by Christensen [1].   The end result, however, is different.  In the 
references given, special assumptions were made which reduced the failure 
criteria to four or five property forms.   With interest in generality, no such 
assumptions are used here, leaving the properties count as six.  The paired 
failure criteria (7) and (9) are derived and displayed here for the first time, as of 
the date of this internet entry. 
 
   It should be noted that for applications the fiber direction stress &11 must be 
taken in the fiber direction in the deformed configuration, not the reference  
configuration.  To do otherwise could cause &11 to induce a very large 
longitudinal shear stress which would certainly cause matrix controlled failure. 
 
   The physical significance of the present anisotropic failure criteria, (7) and 
(9), is that they are the direct counterpart of the isotropic failure criteria given in 
the previous section. As seen from the previous section, failure in isotropic 
materials is much more highly developed than is the anisotropic case.  
Nevertheless, as shown here, significant progress has been made in the more 
difficult anisotropic case. 
 
     The fiber controlled failure form (9) has an interesting history.  This form is 
commonly called the maximum stress criterion.  It has always been considered 
to be a highly useful but totally empirical form for fiber composites.  In the 
present derivation it is not empirical at all, it is a rational and rigorous result of 
the method, which is based upon the conditions of a high degree of anisotropy, 
with no subsidiary assumptions.  In this connection it can also be observed that 
the matrix  controlled failure criterion, (7),  certainly is not a maximum stress 
form.  The two criteria (7) and (9) seem to be very different when compared 
through the commonly used form (9b) but not so greatly different when 
compared through the equivalent but more formal (9a).  The two coordinated 
failure criteria, (7) and (9), are the end result of this physical derivation. 
 
   The failure criteria (7) and (9) are thus fundamentally based upon the high 
degree of anisotropy conditions (2)-(4), which in turn are motivated by the 



properties of carbon-polymer systems.  Although some other types of fiber 
composites may not satisfy the high anisotropy conditions, they likely would 
still favor the separation of failure modes as in (7) and (9).  Most systems at 
high fiber concentration have failure modes strongly influenced by the fiber to 
matrix morphology.  As an example, transverse cracking as a matrix controlled 
failure mode is common to virtually all fiber composites. 
 
   Two well known failure criteria for fiber composites are those of the Tsai-Wu 
form and the Hashin form.  These two criteria will be stated here for 
comparison with (7) and (9). 
 
     The Hashin criterion [2] starts with the same seven terms in (1), and then 
decomposes into separate fiber and matrix failure modes.  It also distinguishes 
essentially tensile states from compressive states, with separate criteria taken 
for each.  This then involves many more terms than just those in (1) being used 
singly, since some are used twice.  Finally, several assumptions are used to 
bring the parameter count down to a manageable level of the six properties in 
(5).  The end result is the Hashin criterion given by : 
 
Tensile Matrix Mode, (&22+ &33) > 0 
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Compressive Matrix Mode, (&22+ &33) < 0 
 
 

! 

1
C22

C22

2S23

" 

# 
$ 

% 

& 
' 

2

(1
) 

* 
+ 
+ 

, 

- 
. 
. 
(/ 22 +/ 33) +

1
4S23

2 / 22 +/ 33( )2 +

1
S23
2 / 23

2 (/ 22/ 33( ) +
1
S12
2 /12

2 +/ 31
2( ) 01

 

 
 
 
 



Tensile Fiber Mode, &11 > 0 
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Compressive Fiber Mode, &11 < 0 
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The Hashin criterion is thus composed of four separate modes of failure. 
 
     The Tsai-Wu criterion [3] combines all terms in (1) directly into a single 
mode of failure, and gives a seven property form involving the six properties in 
(5) plus one other, F12 below.  The Tsai-Wu criterion is : 
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The  F12 parameter in (11)  is usually called an interaction parameter.  It must  
be specified by some auxiliary means.  Often F12 is scaled differently by writing 
2 F12 rather than F12 in (11).  Some published forms for the Tsai-Wu criterion 
also contain a second interaction parameter, F23, in addition to  the properties in 
(5), but that form is redundant and the form given here without F23 is preferable 
and consistent. 
 
     It is apparent that the present failure criteria (7) and (9) are much different 
from the Hashin and the Tsai-Wu forms.   Later examples will reveal strong 
differences between all three failure criteria for carbon-polymer systems.  The 
Tsai-Wu form does not decompose into separate fiber and matrix  controlled 
modes, whereas the other two criteria do so decompose.  This question of the 
possible decomposition or not of failure modes has always been of central 
importance to the field, and one which has generated strong positions and 
debates.  This will be discussed further below.   
 
   The main difference between the present forms and the Hashin forms is that 
no assumptions are involved with the present forms whereas five particular 
assumptions were necessarily involved in the Hashin derivation.  In addition, 
the Hashin method further decomposes the fiber and matrix  controlled modes 
into sub-modes of either tensile or compressive nature.  The isotropic material 
results of the previous section shows that this “sub-decomposition” is 
unnecessary and inappropriate.    
 
     Following the method given here (or that due to Hashin), under the condition 
of high anisotropy the failure characterization must decompose into the two 
separate failure criteria.  On this basis, the Tsai-Wu form can only apply to 
moderately anisotropic systems, that is only for moderate departures from a 
state of isotropy. It cannot recover the limiting plane strain condition.  The other 
two criteria do not apply under such moderately anisotropic conditions  since 
they do not admit the limiting case of isotropy.  They apply in the high 
anisotropy case typified by carbon-polymer systems.  Thus the decomposed 
failure mode forms apply near one end of the anisotropy scale and recover the 
plane strain condition while the undecomposed form applies near the other end 
of the same scale and recovers the isotropy condition. 
 
    
    Considering the many composites failure criteria which have been proposed 
over time, the three general criteria discussed here stand out as having 
substantial derivations and developments. Of these three criteria, the present 



failure criterion, (7) and (9), has the most physically realistic basis for 
application to high performance fiber composite materials. An example of other 
criteria is that of Puck and colleagues, given by Puck and Schurmann [4].  
Hinton, Kaddour, and Sodden [5] conducted an evaluation exercise for fiber 
composite failure criteria which gives a broad and helpful view of related 
matters.  
 
 
     Now return to the use and interpretation of the failure criteria (7) and (9).  In 
order to give examples it is necessary to assign elastic and failure property 
values.  Typical properties for carbon-epoxy systems are given by 
 
 

 E11   = 150 GPa 
 E22   =     9 GPa 
 µ12   =     6 GPa 
 µ23   =     3 GPa 
 '12   =    1/3 
  '23   =    1/2 
 

and 
 
 T11   = 2000 MPa 
 C11   = 1500 MPa 
 T22   =     40 MPa 
 C22   =   150 MPa 
 S12   =     80 MPa 
 S23   =     50 MPa 

 
 
where the shear moduli and Poisson’s ratios are included.  It is seen that these 
typical properties conform to the high degree of anisotropy in both stiffness and 
strength. 
 
      The matrix controlled failure mode, (7), ordinarily involves curved failure 
envelopes such as the  ellipses and parabolas of the isotropic case in the 
previous section.  The most interesting cases are for stress states involving the 
fiber direction stress, &11, along with some of the other stress components, thus 
bringing in both failure modes, (7) and (9).  Shown in Figs. 1 and 2 are the two 



stress states : &11 vs. &22 and &11 vs. &22 = &33, both cases with the other stresses as 
zero. 
 
 

 
Fig. 1  2-D Stress State, Eqs. (7) and (9) 

 
 
 
 

 
Fig. 2  3-D Stress State, Eqs. (7) and (9) 

 
   The 3-D case of Fig. 2 gives a transverse tensile value of about half that of the 
2-D case in Fig. 1.  Fig 2 gives a transverse compressive value slightly larger in 



magnitude that that of Fig. 1.  The Hashin form (10) gives the same result for 
the case shown in Fig. 1 but does not give a lower limit for &22 = &33 in the case 
of Fig. 2.  The Tsai-Wu form (11) in both cases gives slender elliptical 
envelopes which at the maximum extend considerably beyond the fiber 
direction uniaxial strengths. 
 
     As a more involved example than those of Figs. 1 and 2 take the realistic 
stress state with &11=1500MPa ( ( of the uniaxial tensile strength) and then 
establish the failure envelope for &22 vs. &33.  The present criteria (7) and (9) 
gives an elliptical envelope.  The Tsai-Wu  criterion also gives an elliptical 
envelope, but it is considerably smaller and shifted from than that from (7).  
The Hashin criterion gives an open ended parabolic form.  To be more specific 
in this example would require selecting a value for the F12 parameter in the 
Tsai-Wu form  (11).  Interested parties should work out cases such as these to 
show the differences between these three criteria, or any others.  They all are 
fundamentally different. 
 
     The corners shown in Figs. 1 and 2 are the direct result of the decomposition 
into separate fiber controlled and matrix controlled modes of failure.  This 
situation is completely parallel to that of the intersecting ductile and brittle 
failure modes of isotropic materials in the previous section.  In physical reality, 
the corners would be expected to be rounded due to the small misalignment of 
testing specimens, and due to existing states of damage and specific 
inhomogeneities, as well as a host of other non-ideal effects.  To some extent, 
this characteristic may also relate to the testing of lamina in isolation as 
opposed to the stabilized behavior of an in-situ lamina within a laminate.  From 
this point of view, it is certainly best to use the  forms directly from the basic 
failure criteria, (7) and (9), rather than to combine them with some artificial 
smoothing technique. Another problem with the regions around corners in 
failure surfaces is the extreme difficulty in generating reliable multi-axial test 
data. It is very much more difficult than that for the one dimensional strength 
tests of the basic properties in (5). 
 
    Fiber composites are rarely used in unidirectional form.  Most commonly, 
lamina (or tows) are taken as the building blocks in laminates (or woven forms) 
composed of layers at various orientations.  It is with laminates where the 
questions of corners in the failure surfaces are best considered and treated.  
Such topics will be taken up in the next section using the lamina level failure 
criteria (7) and (9) as the foundation and starting point 
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