
 

 

 

 

V. FAILURE OF FIBER COMPOSITE LAMINATES – PROGRESSIVE 

DAMAGE AND POLYNOMIAL INVARIANTS 

 
 

   Fiber composites are typically used in flat, laminated forms or variations 

thereof, often also involving woven or braided constructions.  The treatment 

given here will be for the flat laminated form where the aligned fibers in the 

various lamina take different directions within the laminate.  Failure at the 

laminate level is complex and not an obvious matter in terms of deducing the 

theoretical basis for the related failure criteria.  Two very different but 

mainline methods will be given here, although there are many other 

approaches. 

 

   The best place to start is with an understanding of the defect states that can 

and do exist in commercial fiber composite products.  These defects have a 

profound influence upon the strength performance of the resulting materials.  

There are broken fibers, fiber slacks, fiber misalignments, debonds, resin 

rich pockets, cracks, porosity, and on and on.  Effective moduli do not 

depend much on the defects, but failure surely does. 

 

   With all the defects, one could question how any composite material could 

perform at a satisfactory level.  Despite the many defects, the special 

properties of the fibers and the ameliorating role of the matrix combine to 

give an extraordinary balance of properties that remains at a very high level 

for the higher quality products.  To be sure, these composite properties 

would not be possible without a superior capability of the fiber phase or the 

enabling properties of the matrix phase, both are vital and essential. 

 

   Next on the scale of importance is the matter of scale itself.  One of the 

major fulcrums of dissension is the uncertainty as to the scale at which to 

characterize failure.  All failure modes have a scale of action.  The central 

problem is to recognize the scale for a particular mode of failure and then to 

characterize it.  Damage occurs at all scales from molecular on up. 

 

   Perhaps an extreme example will best illustrate the point.  Molecular 

dynamics cannot predict the Euler buckling of a main structural member.  

This mismatch in scales is ridiculously great.  While it is generally taken that 

smaller scales reveal more fundamental effects than do larger scales, there 

are important and critical exceptions to this oversimplification. Many or 
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most materials composing load bearing structures fall under the exceptional 

category.  These engineering materials are strongly distinguished from other 

major classes such as electronic materials and bio-materials which have far 

different primary functions from that of mainly supporting load without 

failure but with minimal deformation. 

 

   Composites laminates have failure modes that inherently relate to the scale 

of the laminate.  For example, delamination is meaningful only at the 

laminate scale.  The different but very broad scales of conceivable relevance 

here are 

 

Atomic – angstroms  10
-9

 m 

Fiber size – microns  10
-6

 m 

Lamina thickness – mils  10
-4

 m 

Laminate thickness – millimeters to inches 10
-1

 m 

 

   Concerning scale dependence, kink bands for example cannot be predicted 

from fiber scale failure.  More generally, contrary to many claims, 

macroscopic failure cannot be predicted by molecular dynamics.  There is a 

6 or 7 orders of magnitude gap that is an imposing barrier.  Realistic 

macroscopic failure predictions must originate from a careful assessment of 

the proper scale for the failure mode.  Many, but not necessarily all 

macroscopic failure modes originate at the macroscopic scale.  Great care is 

needed in making this determination.  Taking macroscopic failure to be at 

the lamina and laminate scales, the origin of the failure modes then depends 

upon the particulars of the layup of the lamina within the laminate. 

 

   Although interesting as concepts and certainly useful in developing new 

materials, truly using nano-mechanics and/or micromechanics effects to 

predict macroscopic failure would require an immense commitment and by 

no means is it an established approach.  Some micro or nano scale 

approaches are that in name only since they “back out” constituent 

properties to give desired macroscopic scale results.  Infact, even just trying 

to predict laminate failure behavior from lamina level behavior may have 

severe limitations, as will be shown later.  Due to the complications of 

damage and of the scale dependence of the failure modes, failure 

characterization based upon nano-scale and microscale idealizations (either 

fully or partially  so) will not be considered  in the two methods to be given 

here. 

 

   There is a very large literature on the subject of damage and failure in fiber 

composite laminates.  All conceivable approaches are being tried, a few 

typical approaches will be mentioned here.  Hinton, Kaddour and Soden[1] 



complied a very useful collection and assessment of many different  

approaches. Puck and Schurmann [2] give an approach originally based 

upon Coulomb-Mohr type behavior.  Mayes and Hansen [3] descriptively 

designate their method as MCT (Multi-Continuum Theory).  Daniel [4] 

treats many aspects of failure.  Robbins and Reddy [5] give an approach 

using internal variables.  Tsai and colleagues [6] give and use MMF 

(Micromechanics of Failure).  A finite element approach to damage and 

failure is given by Tay et al [7],  EFM (Element Failure Method).  Not only 

are there many research sources and references, almost all of them represent 

distinctly different and individualized approaches.   Considering the 

difficulty of the topic, it is not surprising that there is nothing that is even 

within proximity of being a unified, verified, and reasonably recognized 

methodology. 

 

   The present interests and methods will be restricted to carbon fiber–

polymeric matrix systems, which are generally the highest performance 

systems.  As such, these approaches may be somewhat less applicable to 

glass – polymer systems, although the possibility remains open. 

 

   The technical starting point is to recall the lamina level treatment given in 

Section III.  Typical properties for aligned carbon fiber-epoxy matrix lamina 

are given by 

 

 

 E11 = 150 GPa  

 E22 =     9 GPa  

 µ12 =     6 GPa  

 µ23 =     3 GPa 

 !12 =     1/3 

 !23 =     1/2  

  

and  

  

 T11 = 2000 MPa  

 C11 = 1500 MPa  

 T22 =     40 MPa  

 C22 =   150 MPa  

 S12 =     80 MPa  

 S23  =     50 MPa     (1) 

 

 

The two independent lamina level failure criteria derived in Section III are 

given by 



 

Fiber Controlled Failure: 
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Matrix Controlled Failure: 
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   There is something especially attractive about a lamina level failure 

criterion that decomposes into separate fiber controlled and matrix 

controlled failure modes.  They are not the obvious approach of explicitly 

treating fiber failure as distinct from matrix failure and conversely treating 

matrix failure as distinct from fiber failure.  They do allow interactive fiber 

and matrix effects but with all the defects included in an implicit way, and 

still they decompose into the two separated modes of failure.  Two other 

lamina level failure criteria are given in Section III, namely the Tsai-Wu and 

the Hashin forms.  The first does not allow the decomposition of failure 

modes while the second involves four different decomposed sub-forms. 

 

   Concerning the uniaxial lamina failure criteria given above, it is seen that 

the stress in the fiber direction is uncoupled from the other stress 



components.  Should all of these stress components be coupled?  One could 

assume a coupled form and then evaluate the coupling parameters from 

failure data.  While these would then fit a particular set of data, they could 

hardly be considered to be general properties of failure.  It is here preferred 

to use the theoretically derived and idealized form specified by only the 

explicit failure properties in the above criterion, and by nothing else.  This 

then is considered to give the essential elements of failure at the lamina 

scale.  This is what will be used in approaching the method of progressive 

damage at the laminate scale.  Actually, this method bridges between the 

lamina and laminate scales. 

 

 

Progressive Damage  

 

 

   The idea behind progressive damage is quite simple.  Both matrix 

controlled and fiber controlled types of failure can separately and 

sequentially occur during the loading of the various lamina within a 

laminate.  At some point so much damage has accumulated in the form of 

these local failures that the laminate can no longer sustain load.  This then 

comprises the ultimate load,  failure in the broad and total sense. 

 

   So progressive damage in laminates is not so much an original and stand 

alone discipline as it is a careful accounting of the sequence of local failures 

(damage) leading up to the complete failure of the laminate.  The lamina 

level failure criteria for the fiber controlled and the matrix  controlled modes  

still must be selected from a variety of existing forms.  Thus the term 

progressive damage essentially means predicting laminate failure from 

lamina level damage and failure. 

 

   The standard, direct way of proceeding places high priority on modeling 

the failure at the lamina level and then using that to build up to laminate 

failure.  The presumption then is that high accuracy at the lamina level 

would translate into highly reliable results at the laminate level.  This is the 

conventional thinking.  While this line is quite reasonable on its face, the 

problem is in what constitutes high accuracy at the lamina level and how 

does that translate to the laminate level. 

 

   In the immediately following developments, the in-plane and the out- of-

plane failure modes for the laminate will be taken to be uncoupled due to the 

extreme anisotropy of effects between them.  First, the in-planes cases will 

be examined in considerable detail.  Later the out-of-plane (delamination ) 

cases will be taken up. 



 

   Begin with failure of the quasi-isotropic layup case.  The common form 

for this involves equal numbers of lamina in the 0 , +45, -45, and 90 degree 

fiber directions.  The failure of the quasi-isotropic layup is probably the most 

important single case that can be studied.  This limiting case is one of the 

two anchors of all possible layups.  The other limiting case is the 

unidirectional form itself.  All other cases lie between these two extremes.  

Thus the quasi-isotropic case is one of the most severe tests of using a 

lamina level failure criterion to predict damage and failure of a laminate. 

 

   The first damage that usually occurs is that of the matrix failure in some 

lamina.   But this is not of as much interest here as is the complete failure 

involving the fiber load carrying capability.  Taking the properties and 

lamina level failure criteria given above, the exact sequence of failures can 

be determined for the various lamina within the quasi-isotropic laminate.  

These are given by the following sequences for some particularly important 

stress states. The unidirectional stress states are aligned with the 0 degree 

fiber direction.  Lamina level failure criteria (2) and (3) along with 

properties (1) are used in the progressive damage analysis. 

 

Uniaxial Tension 

(i)   90˚  Matrix damage, then 

(ii) ±45˚  Matrix damage, then 

(iii)     0˚  Fiber failure 

 

Uniaxial Compression 

(i) ±45˚  Matrix damage, simultaneous with 

(i)     0˚  Fiber failure 

 

Eqi-Biaxial Tension 

(i) All matrix damage, then 

(ii) All fiber failure 

 

Eqi-Biaxial Compression 

(i) All fiber failure, no matrix damage 

 

Shear (0˚ Ten, 90˚ Comp) 

(i) ±45˚  Matrix damage, then 

(ii)   90˚  Matrix damage, then 

(iii)   90˚  Fiber failure 

 



   In these examples the corresponding moduli are set to zero after the failure 

criteria prescribes the matrix controlled or fiber controlled failure.  The fiber 

failures shown lead directly to overloading the other lamina and total failure 

ensues.  The details of this accounting approach are lengthy, but completely 

routine. 

 

   When the failure mode is matrix controlled, the resulting “jump” in strain 

at constant stress is small compared with the jump in strain that occurs when 

the fiber mode fails in a particular lamina.  This motivates a simplification 

that is here designated as “fiber dominated” progressive damage.  Again, this 

is appropriate mainly to carbon-polymer systems and it preserves the general 

shape of the failure envelopes.   

 

   Henceforth in the progressive damage examples the fiber dominated state 

will be used whereby the matrix controlled properties are taken  to be 

negligible compared with the fiber controlled properties.  Then only a 

sequence of fiber controlled failures in the various lamina need be 

considered.  

 

   For the present properties example, and for the quasi-isotropic laminate, 

the fiber dominated biaxial stress failure envelope is given in Fig. 1 for the 

case of T=C.  In this case subscripts are not needed on the in-plane uniaxial 

strengths.  Tensile and compressive strengths of  2000 MPa are used for the 

fiber direction lamina strengths. 

 



 
 

Fig. 1  Quasi-Isotropic failure envelope, progressive damage, T=C 

 

 

In Fig. 1 and from this point on, the 1, 2, 3 coordinate system refers to the 

laminate with the 3 axis in the thickness direction.  It is seen that the failure 

envelope takes a diamond shaped form  There is reflection symmetry about 

axes that are rotated 45 degrees to those in Fig. 1. 

 



   The failure envelope due to progressive damage in the quasi-isotropic 

laminate with fiber direction strengths from (1) is shown in Fig. 2. 

 

 

 
 

Fig. 2  Quasi-Isotropic failure envelope, progressive damage,  T"C 

 

 

   The T"C case has a lower degree of symmetry than that for T=C.  The 

diamond shape persists and is characteristic of the progressive damage 

approach. 

 

   Now an orthotropic example will be given.  Take a layup that has a strong 

emphasis on the reinforcement in a particular direction, with the volume 

fractions 



     0˚   lamina,   c=1/2 

 

            +45˚  lamina,   c=1/6 

(4) 

            -45˚   lamina,   c=1/6 

 

             90˚   lamina,   c=1/6 

 

 

    

Using the fiber dominated properties from (1) gives the failure envelope as 

 

 

 
 

Fig. 3 Orthotropic failure envelope, progressive damage 



 

 

As seen from Fig. 3 the degree of anisotropy in the strengths is larger than 2 

to 1. 

 

   These diamond shaped failure envelopes are like those of the maximum 

normal strain criterion for three dimensionally isotropic materials.  This 

similarity is not just a coincidence.  At the lamina level the failure criterion 

is that of stress in the fiber direction.  For a high degree of anisotropy at the 

lamina level, the criterion of stress in the fiber direction is well 

approximated by strain in the fiber direction.  This interpretation is useful 

because strain in the fiber direction at the lamina level is the same as strain 

in a fiber direction at the laminate level, for the in-plane conditions.  Thus in 

these examples the laminate failure criterion is that of maximum strain in a 

(any) fiber direction. 

 

   The progressive damage behavior shown in Figs. 1-3 is typical for most 

layup forms.  These results are somewhat surprising, especially as regards 

the acute angles of the failure envelopes in the first and third quadrants and 

the associated very large allowable stresses.  The obvious question is 

whether these acute angles reflect expected physical behavior, or are they 

artifacts of the method of progressive damage. 

 

 

Testing Results 

 

 

   Hinton, Kaddour, and Soden[1] conducted a lengthy and detailed 

evaluation of many different fiber composite failure theories.  Most of the 

theories that were included in their study involved variations of progressive 

damage.  In particular for a quasi-isotropic laminate they found rather good 

agreement between data which they cited (by Swanson) and progressive 

damage in the first, second, and fourth quadrants of biaxial stress states.  It 

should be noted that the data in the first quadrant did not extend all the way 

to the apex of the predicted failure locus.  They did not find good agreement 

in the third quadrant, but that was attributed to an experimental deficiency,  

the buckling of the specimens in compression-compression stress states. 

 

   There is a different source of data that gives a different conclusion from 

that mentioned above.  Specifically, data generated and reported by Welsh, 

Mayes and Biskner [8] does not support the first and third quadrant 

predictions of progressive damage for carbon-epoxy, quasi-isotropic 

laminates in biaxial stress states.  Infact, they reported that their data are 



fairly well described by a Mises-like form with no corners at all in the 

failure envelope. 

 

   The Welsh, Mayes, Biskner data are shown in Fig. 4, using symmetry 

about a 45 degree line through the origin. 

 

 
 

Fig. 4  Quasi-Isotropic laminate failure data, IM7/977-2 

(courtesy of Dr. J. S. Welsh) 

 

 

   Thus there are conflicting data sets for the failure behavior of quasi-

isotropic laminates.  One data set supports the existence of the acute angle 

corners in the biaxial failure envelope while another does not support it. 

 



   From a theoretical point of view, the form with corners is prescribed by the 

maximum strain type of failure criterion (in a fiber direction).  The 

maximum strain criterion has no credibility for isotropic materials such as 

metals and polymers, but despite this, does it and should it apply for fiber 

composite laminates?  The entire situation is somewhat ambiguous and 

certainly unanswered. 

 

   Perhaps the strain criterion in the fiber direction is too simplistic for 

laminates.  It is a one dimensional criterion.  Perhaps laminates, as distinct 

from a lamina within the laminate, requires a failure criterion that allows 

more than one dimensional stress and strain representations.  Perhaps 

laminates allow more critical (lower level) failure modes than those 

permitted by one dimensional strain.  The genesis for the one dimensions 

strain criterion is likely the overly simplified view that composites are 

composed of perfectly straight fibers that are perfectly collimated and 

spaced in an ideal matrix phase. 

 

   It is seen that this progressive damage approach is built upon a set of 

conjectures as to what the failure mode should be.  However, a qualification 

should be added to this.  It is best viewed as what the failure mode “could 

be”, not “should be”.  It may be best to view this standard progressive 

damage approach as an upper bound.  It is a plausible failure mode but it 

could be superceded by a different failure mode that operates at a different 

scale and at a lower critical value of stress in the laminate. 

 

   Another complication is that of insitu properties and damage.  In quasi-

isotropic laminates under uniaxial tensile stress the lamina under the most 

load in the fiber direction has no significant transverse stresses causing 

matrix cracking.  But in eqi-biaxial tension all lamina have very extensive 

matrix cracking and damage.  The transverse cracking also can further 

degenerate into delamination.  In eqi-biaxial tension the damage is invasive 

and it compromises the load carrying capacity in the fiber direction within 

any lamina.  The diamond shaped failure envelope from progressive damage 

is too idealized to accurately reflect such degrading effects.  A more 

conservative and more physically realistic failure envelope may be called 

for. 

 

 

Polynomial Invariants 

 

 

   If there were a need to characterize failure for a given laminate 

configuration and the method of progressive damage was not available, how 



would one approach the problem?  Almost certainly one would use the same 

general method as was used in Section II for isotropic materials.  

Specifically, one would take a polynomial expansion in the stress invariants 

for the symmetry of interest.  Then truncate the expansion at second degree 

terms.  As then expressed, the form would involve specific constants or 

parameters to be interpreted as the failure properties.  By obvious 

description the method should be designated as that of “Polynomial 

Invariants”.  Exactly this method will be developed and followed here for 

the failure of laminates. 

 

   The reason why the polynomial invariants method may be more 

appropriate than progressive damage is that some failures are at the laminate 

level, not the lamina level.  Thus some failure modes involve cooperative 

motions between the lamina within the laminate.  Any failure mode has a 

scale of action at which it is relevant, and the laminate failure modes should 

be considered. 

 

   The first developments and examples will be for quasi-isotropic laminates.  

The failure modes will be concerned with the in-plane ones and then later 

the out-of-plane ones (delamination) will be developed.  The term quasi-

isotropic refers to in-plane elastic moduli (or compliance) properties.  It is an 

entirely separate question to consider whether the failure properties are also 

quasi-isotropic.  A close examination of the progressive damage method 

shows that its strength properties are not quasi-istropic even when the 

moduli are.  In contrast, for the polynomial invariants method to be 

developed here, the failure properties will be taken to be quasi-isotropic 

when the laminate has quasi-isotropic moduli.   

 

   The in-plane invariants for quasi-isotropic behavior are 
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Taking the polynomial expansion in these invariants and truncating at 

second degree terms gives the failure criterion as 
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where T and C are the in-plane uniaxial tensile and compressive strengths  

and S is the in-plane shear strength. 

 

   Many or perhaps most fiber composites applications involve orthotropy.  

For the case of orthotropy, the full three dimensional form for polynomial 

invariants involves 12 independent properties.  When specialized to the case 

of fiber composite laminates, with the in-plane and out-of-plane forms being 

decomposed, the resulting polynomial invariants form for the in-plane case 

involves 6 properties and is given by 
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where the T’s and C’s and S12 have the obvious strength identifications, but 

#12 is yet another independent strength property.   

 

   These two expressions are the final results from the polynomial invariants 

method for the quasi-isotropic and the orthotropic cases.  Three strength 

properties are required for the former case and six for the latter.  These 

results are not subject to the fiber dominated condition used in the preceding 

development of progressive damage. 

 

   For purposes of comparing these results with those of fiber dominated 

progressive damage, the numbers of independent strength properties in (5) 

and (6) will be reduced somewhat.  First for the quasi-isotropic case, in the 

special case where T=C, for the polynomial invariants method to give the 

same slope as that of progressive damage where the envelope crosses the 

axes then determines S in terms of T as 
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Now in the case where T"C, the similar procedure gives the best fit between 

the two methods as 
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  In the orthotropic case, the property #2 can be determined (not uniquely) in 

terms of the T’s and C’s as 
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where the 2/3 factor is found by requiring that the form (9) reduce to the 

proper result in the quasi-isotropic specialization of the orthotropic form. 

 

   A fiber dominated estimate of strength property S12 in terms of the usual 

known properties is given by 
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where Tx  and Cx are the lamina level fiber direction strengths and c0 and c90 

are the volume fractions of the 0 and 90 degree lamina in the orthotropic 

laminate. 

 

   With relation (8) the properties needed for the quasi-isotropic laminate 

reduces to only T and C.  With relations (9) and (10) the properties needed 

for the orthotropic laminate reduces to only T11, C11, T22, and C22.  Of course 

it would be far preferable to experimentally determine all three properties in 

the quasi-isotropic case and all six properties in the orthotropic case, but 

there are situations where this is difficult and only the uniaxial tests can 

readily be performed. 

 

   Fig 5 shows the polynomial invariants, quasi-isotropic  prediction for T=C 

and Fig. 6 for T"C, both from (5) and using (7) and (8) respectively.  Also 



shown are the predictions from progressive damage, with both methods 

calibrated to give the same uniaxial strengths in the two directions. 

 

 

 
 

 

Fig. 5  Quasi-Isotropic failure, polynomial invariants, T=C 

 

 

   



 
 

Fig. 6  Quasi-Isotropic failure, polynomial invariants, T"C 

 

 

   It is now apparent that the polynomial invariants prediction would give a 

more realistic model of the data in Fig. 4 than would progressive damage. 

 

    



   Fig. 7 shows the orthotropic laminate example failure prediction from 

polynomial invariants, (6) along with (9).  This orthotropic laminate has the 

layup pattern specified earlier, (4). 

 

 
 

Fig. 7  Orthotropic failure, polynomial invariants 

 

 

   The comparisons and differences between polynomial invariants and 

progressive damage predictions are striking.  The polynomial invariants 

approach has the rather “smooth” behavior often seen when complicated 

physical effects along with a great many defects and imperfections are at 

interaction.  Progressive damage appears to be a much more idealized and in 

effect non-conservative prediction of behavior.  In another sense the 

difference is perhaps in even sharper focus.  Progressive damage predicts 

failure at the lamina level, and presumes that it controls laminate behavior.  



In contrast, polynomial invariants predicts and is based only upon failure 

modes at the laminate scale.  Which method is most reflective of physical 

reality?  That remains as an open and likely contentious question.  The 

limited data that are available are contradictory on this question.   

 

   It should be remembered that the progressive damage predictions are based 

upon the theoretically derived lamina level failure criteria.  If one abandons 

that particular basis and simply adjusts lamina level failure envelopes then 

just about any desired laminate level prediction could be obtained through 

progressive damage.  While that might satisfy a particular set of data, there 

could be no confidence in the generality of that approach.  The view favored 

here is that the polynomial invariants method has a more solid grounding 

and it is more likely to be generally useful.  These questions and 

uncertainties will be taken up in the future section concerned with critical 

tests for failure criteria. 

 

   There remains the possibility that for preliminary design purposes, 

progressive damage could be used to give the uniaxial strengths for any 

particular laminate configuration and then that is used in the polynomial 

invariants method to give the complete failure envelope. 

 

   A note on terminology may be helpful.  The term polynomial invariants 

that is developed and applied here for qausi-isotropic and orthotropic 

laminates of course could be applied for any symmetry of interest.  Infact the 

isotropic material case of Section II certainly employed polynomial 

invariants, although this terminology was not explicitly used there.  The 

three lamina level failure criteria, (2)&(3) and the Tsai-Wu and the Hashin 

forms, also represent special cases of polynomial invariants.  

 

   Up to this point, only the in-plane failure characterization has been 

considered.  Now the out-of-plane, delamination, case will be addressed.  

Using the method of polynomial invariants, it is quickly found that the 

failure criterion for delamination is given by 
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where T33 and C33 are the thickness direction uniaxial strengths and S23 is the 

interlaminar shear strength.  The form (11) is the delamination failure 



criterion (assumed) for all layups, and the stress components are those 

transmitted across the interfaces.   

 

   Generally but not necessarily the failure in the thickness direction is due to 

delamination between laminae rather than failure within the individual 

lamina themselves.  It is treated as such here.  The delamination failure is 

essentially that of the failure of the extremely thin polymer layer of locally 

fluctuating thickness between the lamina. Combinations of through the 

thickness tension and interlaminar shear are seen to be especially limiting in 

(11).   

 

   The failure criterion  (11) is a fail/no fail type of overall criterion.  

Sometimes delamination is of a progressing and advancing nature.  This type 

of behavior can be effectively treated using fracture mechanics with a 

cohesive zone failure model. 

 

   In many circumstances the “weak links” with fiber composites are the 

transverse tensile cracking of the matrix phase and that of delamination.  If 

no matrix cracking is to be allowed then the matrix controlled failure 

criterion (3) at the lamina level can be used in design to prevent it. Often 

however some small degree transverse matrix cracking can be tolerated as 

containable damage.  The situation with delamination is usually much more 

serious and no delamination at all can  be allowed.  Any area of 

delamination destroys the compatibility between the lamina and renders the 

laminate as disfunctional.  Failure criterion (11) (or some alternative form) 

must be used to prevent delamination from happening under ordinary 

conditions. 

 

   The in-plane and the out-of-plane failure modes have thus far been taken 

to be independent.  In reality there could be some coupling between them.  

Infact, transverse cracking in the lamina can nucleate delamination in the 

laminate.  It is know that in-plane failure can, in some cases, involve  

complex  combinations of partial delamination with the fiber controlled 

failure.  The direct method of progressive damage shown here cannot 

account for such interactive effects.  In contrast, the method of polynomial 

invariants, as applied to the entire laminate, can and does implicitly contain  

all such effects, including the effects of the lamina stacking sequence. 

 

   Further complications which can occur are those of interlaminar edge 

effects in the testing of laminates.  Such effects can obscure the overall 

objective of determining the intrinsic mechanical properties of failure for the 

laminate.  It is seen that many of the complications that arise with the failure 

of laminates arise only at the explicit scale of the laminate and are 



completely invisible to failure characterization at smaller scales.  

Progressive damage treats laminate failure as superimposed failure effects 

from those at smaller scales.  Failure is of a completely nonlinear character 

and must include all effects operative up to and including the scale of 

interest. 

 

   It should not be construed that the proper failure criterion for laminates 

would obviate the need for a proper failure criterion at the lamina level.  

Both would be equal partners in understanding all failure effects.  Indeed, 

the individual fiber and matrix failure criteria and capaility levels are also of 

great interest as independent matters.  Forms for three of these four 

categories are given in this website. 
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