
 
 
VII. THE DUCTILE/BRITTLE TRANSITION, GAGING              
 DUCTILITY LEVELS 
 
 
 In setting out to theoretically characterize and differentiate ductile 
behavior from brittle behavior it is necessary to first have a credible theory 
of failure as the starting platform.  Historically there was one exceptional 
mathematical failure criterion and a long list of failures.  Perhaps the failures 
would be better described as mis-guided attempts.  In any case, none of them 
were successful.  Only the Mises criterion (and to a much lesser extent the 
Tresca criterion) for (but only for) ductile metals was an unqualified and 
very important contribution. 
 
 All other materials types such as polymers, ceramics, glasses, brittle 
metals, and minerals did not yield to successful mathematical failure criteria 
description.  The cases of non-metallic materials usually have been 
approached with empirical failure criteria on a case by case basis.  Such 
empirical forms do not have established limits of validity, and represent little 
more than curve fits over narrow ranges of data.   
 
 For a general approach to failure criteria to be successful it must 
originate from some unifying concept or some special type of physical 
identification.  This will be considered under the next heading, followed by 
other closely linked subsections on ductility and brittleness.  If the vitally 
important areas of ductile and brittle behaviors are to be realistically treated 
they must be closely interwoven with a general treatment of failure criteria 
that applies across the ductile and brittle materials classes.  All of these 
matters will be taken up now. 
 
 
Organizing Principle 
 
 
 In searching for an organizing principle for failure criteria, there is an 
overwhelming example that at least supplies the motivation and inspiration 
for trying to do so.  This is the Periodic Table of the Elements.  Its 
organizing principle is that of the sequence of atomic numbers that then 
admits further classification when grouped in matrix form with rows and 
columns. 
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 Is there such a unifying and organizing basis for materials failure?  In 
pursuing this possibility, attention will be focused upon isotropic materials.  
In scanning across the various materials types, there is an apparent, even 
obvious differentiation, but still with a connecting thread between them.  
This difference is that some types of materials have about the same strength 
in simple tension as in compression, while some others have far less strength 
in tension than in compression.  Still other groups fall in between these two 
groups.   
 
 Since the times of antiquity it was always well known and well 
utilized that gold fell into the first group.  It also was learned how to live 
with the restrictions imposed on the second group for all the common 
minerals used in ancient construction.  However, in the era of failure criteria 
activity, the realization of the tensile versus compressive strength differences 
never progressed beyond that point.  There only was an awareness of the 
negative consequences of the possible disparity, no recognition of a possible 
deeper meaning. 
 
 The present program of failure characterization is based upon the 
hypothesis that general isotropic failure behavior is completely organized by 
and determined by the spectrum of T/C values, where T and C are the 
uniaxial tensile and compressive strengths.  The spectrum of T/C values 
captures the entire spread from brittle behavior to ductile behavior over the 
range 
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This brittle to ductile change with the variation of the T/C’s is an integral 
and important part of the organizing structure.  Infact, it provides the portal 
to all further developments. 
  
 The T/C ratio at a particular value will be referred to as the “materials 
type”.  Thus there is a continuous spectrum of materials types, not just a 
sequence of discrete groups.  The traditional materials groups, polymers, 
ceramics, etc., have rather specific bands of T/C’s, although there can be and 
are overlaps. 
 
 The individual strength properties T and C have very different roles 
and functions to fulfill in synthesizing the related failure criterion.  Both T 
and C are involved (but unspecified) at the ductile limit of T/C=1.  In 
contrast, only C is involved (but unspecified) at the brittle limit, T/C=0, 
because T!0.  Accordingly it is advantageous to nondimensionalize stress 



with respect to C (using T would not be possible) and then have the ensuing 
failure criterion be expressed entirely in terms of the T/C spectrum. 
 

Following this course take 
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The organization of failure theory based upon the T/C spectrum does 

not automatically determine the failure criterion, but it does indicate that 
only two properties suffice for the specification.  In Sections II and VI the 
consequent failure criteria for isotropic materials are derived and given in 
forms that can be put into the following equivalent forms involving only 
T/C. 

 
The overall failure criterion for homogeneous and isotropic materials 

is actually composed of two separate criteria.  The first part covers the full 
range of T/C's while the second part is fracture related and covers the brittle 
part of the range. 
 
 
POLYNOMIAL INVARIANTS FAILURE CRITERION 
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where principal stresses are employed.   
 

The individual values of T and of C only tell the specific strength 
properties for a particular material, but it is the T/C ratio that signifies the 
materials type that is so pivotal in formulating and in interpreting this 
general theory of failure.  A little later the T/C spectrum will also be found 
to be of first importance in ductile/brittle matters.  
 
 The two coordinated failure criteria for isotropic materials, (1) and 
(2), now will be used to develop a framework for characterizing and 
quantitatively differentiating ductile behavior from brittle behavior.  Before 
doing so, a final observation on the historical search for failure criteria may 
be in order. 
 
 Criteria (1) and (2) reduce to the Mises criterion at T/C=1, and they 
also reduce to a physically meaningful brittle limit at T/C=0.  Thus the 
Mises criterion is a functional part of this general form.  The maximum 
normal stress criterion, originally proposed by Lamé and Rankine, has a 
superficial resemblance to the fracture criterion (2).  If it, (2), were to be 
considered as a free standing failure criterion, it would be necessary to omit 
(ignore) the condition for its applicability shown in (2).   In some current as 
well as past sources of information it is stated that the Mises criterion covers 
ductile materials and the maximum normal stress criterion covers brittle 
materials.  The first half of this assertion is partially correct but the second 
half of it is completely fallacious.  For example, common iron is 
conventionally considered to be a brittle material.  When one compares the 
maximum normal stress criterion with typical data for the failure of iron, the 
lack of correlation is glaringly obvious.  The comparison of the coordinated 
failure criteria (1) and (2) with brittle material behavior is quite good, see 
Section VI. 



 
It is indeed somewhat surprising that this association of T/C values 

with the controlling physical behavior was not probed or at least recognized 
a great many years ago.  But that is just a curiosity, a footnote to history.  
Building up a viable theory of behavior is another matter entirely and only 
the latter counts for anything, anytime. 
 
 
 
Characterizing Ductility 
 
 
 The conventional methods for characterizing ductility and brittleness 
are as follows.  Brittleness is usually taken to be the sudden, unexpected 
interruption of the linear elastic stress strain loading form.  Not only is this 
“unannounced” failure occurrence annoying, it often is dangerous, 
sometimes extremely dangerous.  Some warning of impending failure would 
be tremendously helpful.  This simple classification of idealized brittle 
behavior will suffice for initial purposes. 
 
 Ductility is much more complex.  The usual method of identifying 
ductility is with imposed uniaxial tension.  If the material proceeds with a 
strain hardening state after exceeding some yield stress, and if it is capable 
of experiencing large strains in that state then it is said to be ductile.  This 
view is unduly restrictive and it certainly doesn’t suffice for describing 
ductility for three dimensional stress states.  There is a need for a more 
inclusive definition of ductility.  For present purposes, relevant examples of 
brittle and ductile behaviors are given in Fig. 1. 

 
Fig. 1   Failure types 



 
 
In these diagrams, " and # are taken to represent any stress strain loading 
state, one, two, or three dimensional.  But the progressive loading is always 
taken to be of the proportional type.  That Case (i) is brittle is obvious.  So 
too is Case (iii) obviously ductile.  However, Case (ii) is where the 
complexity arises.   Case (ii) is crucial, and will first be approached in the 
manner now shown. 
 
 The distinguishing characteristic of ductility is here taken to be the 
capacity to absorb mechanical energy and convert it into irrecoverable heat 
energy, or involve some other irreversible damage process.  Perhaps the best 
way to characterize ductility is that it involves mechanical energy 
dissipation, which is completely absent in the case of idealized brittle failure. 
 
 Obviously Case (ii) has a smaller degree of ductility than does Case 
(iii).  How important is this?  Any ductility is much more than no ductility.  
Even in this sense, a small degree of ductility is very helpful and it affords 
an important capacity for damage tolerance.  In non-uniform stress states, e. 
g. stress concentrations, some ductility allows material mobility to adjust to 
local conditions without causing macroscopic failure. 
 
      With the above considerations in mind, Case (ii) will be taken with the 
following method of broadly (not precisely) distinguishing ductile from 
brittle behavior. Fig. 2 shows Case (ii) with some designations. 
 
 
 
 
 
 



 
Fig. 2   Failure designations 

 
 
The conditions of brittle versus ductile behavior are taken to satisfy 
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These forms give a general and conventional threshold for ductile behavior.  
In the second of these, the strain at failure may be as little as only 30 or 40 or 
50% greater than the elastic projection, for there to be the inception of 
significant ductility.  Otherwise, the mechanical failure behavior is taken to 
be brittle as in Case (i) or close to it.  So brittle behavior allows a moderate 
generalization beyond that shown in Case (i).  Still, there is a “grey” area, an 
uncertain area, in between the behaviors of totally brittle and ideally ductile 
types.  Also, this operational definition of and distinction between ductile 
and brittle behaviors is stress state dependent, and it is taken to apply to all 
stress states. 
 



 Again, it should be emphasized that even a small degree of ductility 
can be extremely advantageous, especially as compared with idealized brittle 
behavior, Case (i).  These designations will suffice for having a physical 
understanding of the possible and likely differences between ductile and 
brittle behaviors. 
 
 The clear message is that ductile versus brittle failure behavior is not 
just an on/off switch.  There is a graded and graduated change from one to 
the other.  To say these are difficult matters would be an understatement.  
They pose long standing, classically difficult, unresolved issues.  
 

The fundamental task is that of quantifying ductility levels.  None of 
this so far accomplishes that purpose.  To make progress on theoretically 
gaging ductility levels requires a drastic change in direction and approach 
from the vague and rather loose traditional discussions of ductility at the 
macroscopic level.  Now a new direction will be sought.  In so doing, it 
should be recognized that any real improvement in characterizing ductility 
(or lack of) for homogeneous materials must be applicable to all stress states, 
not just carefully selected, particular ones.   
 
 
The Ductile/Brittle Transition, the Failure Number for Gaging Ductility 
Levels 
 
 
 A given material is generally taken to be ductile or brittle based upon 
experience and exposure.  In this heuristic but eminently practical approach, 
ceramics are said to be brittle, some metals are brittle and some are ductile, 
and polymers are “all over the place”.  There is nothing inherently wrong 
with intuitive and practical approaches but it is likely that there could be a 
more organized approach to this problem.  First there should be some 
measurable but nondimensional physical characteristic(s) that determines the 
materials type as it relates to its expected failure type, ductile or brittle.  Not 
surprisingly this missing identifier will here be taken to be the strength ratio 
T/C.   
 
 But if one tries to use only the T/C tag to make general assertions 
about ductile versus brittle failure, one must also ask if this could be true 
under all conditions.  It is quickly seen that there must be qualifiers, 
especially that of the stress state under which the failure characteristic is to 
be determined.  Generally tensile type stress states are far more likely to 
promote brittle behavior, for a given material, than are generally 
compressive type stress states.  The objective here is to find a rational 



method for classifying and quantifying expected failure behavior, ductile or 
brittle with appropriate gradations in between, based upon the materials 
type, specified by T/C, and the specific imposed state of stress at failure.  
 
 In the papers containing archive references given in Section II and 
discussed in Section VI, a criterion for ductile versus brittle failure is given 
as 
 

 

I1 < 3T !C , Ductile

I1 > 3T !C , Brittle
    (3) 

 
where 

 

I1 = !11
f +!22

f +! 33
f  is the first invariant in terms of the failure 

stresses.  These relations, for specified values of T and C then designate 
which stress states are expected to represent brittle failure and which ones 
have ductile failure.  The first invariant is at its value on the failure 
envelopes (1) or (2) and thus expressed in terms of T and C for the imposed 
stress state. 
 
 Now express relations (3) in non-dimensional form for further use 
here, 
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where 

 

ˆ ! ii
f  is the nondimensionalized first invariant of the failure stress state 

from (1) or (2).  The relations in (4) actually only give the transition from 
ductile to brittle conditions when the inequalities are replaced by an equality.  
Thus, for a particular stress state the value of T/C can be found at which the 
stress state is at the borderline between ductile and brittle failures but it tells 
nothing about the relative scales of ductility or brittleness in general failure 
conditions.   
 
 It will be helpful to recall here the outline of the derivation of (4).  
Take the two dimensional state of biaxial failure stresses as shown in Fig. 3. 



 

 
Fig. 3   Ductile/Brittle Transition, 2-D example 

 
 
Relations (1) and (2) produce the intersection of failure modes shown in Fig. 
3.  The domain is divided into ductile and brittle regions at the intersection 
of the failure modes, as shown. If the ductile brittle division were taken 
through the other intersection corners nearer the origin in Fig. 3 it would 
quickly be found to lead to unacceptable results.  This process is repeated, 
taking T/C as a continuous variable to find the functional relationship 
between T/C and the division into ductile and brittle regions.  The functional 
relationship is then taken to continue into the range where T/C$1/2.  The end 
result is the ductile/brittle criteria, (4).  
 
 The fact that this ductile/brittle division is at the intersection of failure 
modes (1) and (2) requires that this be done in two dimensional stress space 
as a subspace of three dimensional stress space.  It cannot be done 



unambiguously in one dimensional or directly in three dimensional spaces. 
Deriving the ductile/brittle criteria in this way in two dimensional space 
leaves the one dimensional and three dimensional behaviors to be critically 
examined for verification of predicted behavior using test results.  This has 
been done in Section VI, although much more testing could be done along 
these lines. 
 
 As a simple example of relations (4) consider the case of the failure 
stress in simple shear.  Take S as this failure stress.  Using relations (1) and 
(2) and (4), along with S/T=(S/C)(C/T) gives the result in Fig. 4. 
 

 
 

Fig. 4   Shear stress failure types 
 
 
The change in failure mode type as well as the type of failure (ductile or 
brittle) occurs at T/C=1/3 for a state of simple shear. 
 
 It is important to visualize the ductile/brittle criteria (4) in three 
dimensional, principal stress space.  The failure criterion (1) takes the form 
of a paraboloid in principal stress space.  The fracture criterion, for T/C%1/2, 
cuts off “slices” from the paraboloid, leaving three flattened surfaces on it.  
The ductile/brittle criteria (4) at the transition represents a plane which is 



normal to the axis of symmetry of the paraboloid.  The ductile/brittle 
transition plane from (4) is given by 
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This plane divides the failure surface into ductile and brittle regions as 
shown in Fig. 5 for the example T/C=0, the brittle limit. 
 

 
 

Fig. 5   Ductile/Brittle Transition, 3-D example 
 



Even in this limit case, T/C=0, there still are separate ductile and brittle 
regions.  This will be further discussed a little later.  At any T/C value, the 
ductile/brittle plane cuts across the three elliptical flattened surfaces (when 
they exist, T/C % 1/2) at their 1/4 points nearest the apex of  the paraboloid. 
 
 It would not be expected that the ductile/brittle transition at any T/C 
value is of a sharp nature.  This is not a first order thermodynamic transition.  
The significance of this division boundary is that the proclivities toward 
ductile versus brittle failure are in balance, while on either side of the 
division the weighting gradually shifts to a dominate effect, one way or the 
other. 
 
 Planes of equal but unspecified ductility would be parallel to the 
ductile/brittle transition plane defined by (5).  It would be advantageous to 
have the means to characterize the degree of ductility (or lack of it) for 
particular failure states on either side of the D/B transition plane.  To this 
end, rewrite (5) in an alternative form.  Take & to be specified by  
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When &=0 (6) just reverts back to the criterion (5) for the transition.  But 
when &'0, (6) has an interpretation as a measure of the degree of ductility or 
brittleness, as will be shown.  This is not surprising since it is already known 
that &=0 is one point on the ductility/brittleness scale.  Positive values of & 
reflect ductility, while negative values indicate brittleness.  For a fixed value 
of T/C, & represents a measure of distance from the ductile/brittle transition 
plane to the parallel plane containing the stress state of interest. 
 
 Examine the case of uniaxial tension.  For this stress state 
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and so (6) gives 
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For the range on T/C as 0 % T/C % 1 then 
 

 

!1" # " 1 
 
Also, it should be noted that for uniaxial tension the ductile/brittle transition 
is at T/C=1/2.  The stress state of uniaxial tension is the only one that has 



these matching symmetry forms on T/C and on &.   Uniaxial tension will be 
taken as the baseline stress state, and all other stress states will be calibrated 
relative to it.  It comprises the basic template for characterizing ductility.  
The value &=1 corresponds to full, perfect ductility, while &= -1 corresponds 
to total brittleness 
 
 Now consider the state of simple shear stress.   In this case 
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(6) becomes  
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For uniaxial tension the ductile /brittle transition value of T/C=1/2 gives 
&=0.  But for simple shear the same T/C=1/2 value gives &=1/2.  This means 
that at this value of T/C, simple shear failure is more ductile than is uniaxial 
tensile failure.  And at T/C=2/3, then for simple shear &=1, the fully ductile 
situation.  Thus for the case of simple shear, values of T/C larger that 2/3 
simply remain as fully, perfectly ductile at &=1.   
 
 Any stress state that at a particular value of T/C gives a value of & 
larger than 1 will be assigned as fully ductile, at &=1.  Correspondingly any 
stress state with a value of & less than -1 will be taken as totally brittle at &= 
-1.  In effect, the planes of perfect ductility and total brittleness are located at 
fixed distances from the D/B plane for all T/C’s.  
 

It is convenient to rescale the quantity &. For -1 % & % 1,  change the 
variable so that the new scale goes from 0 to 1.  To this end, take 
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or using (6) 
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Consistent with taking & at limits of -1 and 1, as totally brittle or perfectly 
ductile respectively, the new quantity Fn will revert to the limits of 0 or 1 
when its value from (7) is outside these limits.  So always  
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Calibrating to the uniaxial tension stress state is the only one that then gives 
Fn=1/2 at the T/C values for the ductile/brittle transitions of all the stress 
states.   
 

A slightly different form of (7) is that of 
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where 

 

ˆ ! m
f  is the nondimensionalized mean normal stress at failure. 

 
 The quantity Fn will be called the failure number.  It represents a 
measure of ductility, with Fn=0 being no ductility, total brittleness, and 
Fn=1 being full, perfect ductility.  Rather than expressing Fn within the 0 to 
1 interval, it will always be stated as the corresponding percentage, from 0 to 
100%.  For Fn=50% the material is at the ductile/brittle transition.  This is 
the 50-50 case as regards ductility versus brittleness.  For Fn below 50% 
brittleness begins to dominate, while for Fn above 50% ductility begins to 
dominate.  
 

The procedure for using the failure number is as follows.  The sum of 
the three normal stresses at failure, 
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f , are found from the failure theory 

(1) and (2) or they may be taken directly from experimental data.  These are 
then put into the failure number formula, (7).  The two simplest examples 
are uniaxial tension and compression.  The former has 
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latter has 
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f =-1.  Putting these into (7) gives the corresponding failure 

numbers as functions of T/C.  These can then be evaluated at specific values 
of T/C to ascertain the related ductility level. 
 
 The table below shows the values of T/C for the ductile/brittle 
transition and the failure number formulas for some basic stress states.   
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Table 1    Failure Numbers, Fn 

 
There are no failures in eqi-triaxial compression in this failure theory. 
 
 Next the failure numbers for various stress states are arranged in 
descending order, thus going from the most ductile stress state to the least 
ductile, most brittle stress state.  Cases over the full range of T/C’s are given. 
 



 
 
 Table 2 gives a comprehensive view of the ductility levels of the 
failure mechanisms as a function of the stress state and the materials type.  It 
is the state of uniaxial tension, not shear, that anchors the results.  The state 
of uniaxial tension is of fundamental and singular importance in calibrating 
the ductile/brittle behavior for all isotropic materials.   
 



It is seen that insofar as ductile versus brittle failure behavior is 
concerned the sensitivity to the stress state type is just as great as the 
sensitivity to the materials type. It must be recognized that there are very 
large differences in failure behavior for materials below the 50% ductility 
level from those above it.  For example, for the uniaxial tensile stress state, 
the ductility level of 25% would be in the range of T/C’s for ceramics, while 
the 75% level would be representative of T/C’s for very ductile polymers.  
The large majority of cases in Table 2 are at or below the ductility level of 
50% indicating problems with expected brittle behavior. 

 
It also is apparent in Table 2 that cases below and to the left are 

dominated by brittle behavior, while those above and to the right are ductile.  
It is thus possible to identify ductile versus brittle failure mode groupings as 
a function of materials type and stress state.  The key to this division are the 
cases at the 50% level, the ductile/brittle transition.  All of the 50% values 
are exactly at Fn=1/2. 

 
In the four cases in Table 2 at T/C=0 with no ductility, total 

brittleness, it should be remembered that the corresponding stress levels 
allowed by the failure criteria are at zero, so the ductility levels are 
irrelevant.  However this does show that exceedingly small T/C’s would 
have virtually total brittleness.  The one case at T/C=0 with a specified 
ductility level reflects the fact that even at T/C=0 a compressive mean 
normal stress component does stabilize the material and give an allowable 
failure stress level with a corresponding ductility level. 
  
 It is generally true that for a given stress state, the ductility increases 
with increasing values of T/C.  However, such simple rules become invalid 
when comparing different stress states.  For example, from Table 2 it is seen 
that a T/C=1/3 material in simple shear is more ductile than a T/C=2/3 
material in eqi-biaxial tension. 
 
 Another set of examples involves more complicated stress states than 
those given in the above tables.  Consider two possible stress states where 
the principal stresses at failure are in the proportions 
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It is of interest to know which one is the more ductile of the two stress states, 
and by how much.  To proceed further it is necessary to specify the material 
of interest.  Take the material as a typical, fairly ductile epoxy resin with 
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As the first step, note from (7) that the failure number for this epoxy in 
uniaxial tension is 
 

 

Fn = 60% , Uniaxial tension, epoxy 
 
It will be of relevance to not only compare the failure numbers for the two 
stress states with each other, but also with that for the material in uniaxial 
tension, which comprises the base line.  The answers to these questions of 
relative ductility levels are certainly not obvious.  All three stress states will 
be shown in the comparison.  Using the Fn formula (7) and the failure 
criteria (1) and (2) it is found that 
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Uniaxial Ten. 1 : 0 : 0 3/5,  0,  0 60% 

I 1 : 2/3 : -2/3 3/7, 2/7, -2/7 69% 

II 1 : 2/3 : 1/3 3/5,  2/5, 1/5 30% 

 
Table 3   Failure numbers for 3-D stress states at T/C=0.6 

 
It is seen from this table that Case I is on the ductile side of the scale and 
Case II is on the brittle side.  Judging from the values of the Fn’s the 
differences in the degrees of ductility are huge.  Furthermore, Case I, the 
ductile case, is even more ductile than the epoxy its self is in uniaxial 
tension.  All of these results would be purely guesswork without the 
rationale of the failure number, Fn. 
 



 The previous examples use a rather ductile epoxy as the material type.  
Now an example will be given in the brittle range.  Take a glass type 
material with 
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Consider states of simple shear at failure as superimposed upon states of 
hydrostatic pressure.  Again using (1), (2) and (7) the nondimensional shear 
stress versus the nondimensional pressure is found to be as in Fig. 6. 
 

 
Fig. 6   Shear stress superimposed upon pressure 

 
The failure number values are shown at a sequence of pressures.  With no 
pressure the glass material is very brittle in shear.  As the pressure increases, 
the material transforms into an essentially ductile material, becoming very 
ductile at the larger pressures.  Without a reliable theory of ductile and 
brittle failure it would be very difficult to predict how much pressure would 
be required to give a specified degree of ductility improvement for a 



particular material.  It also follows that a state of superimposed hydrostatic 
tension can convert a ductile material into an essentially brittle one. 
 
 It is also interesting to note that the change of failure mode and the 
ductile/brittle transition are not coincident, Fig. 6.  Although such 
coincidence does occur in two dimensional stress states, as explained earlier 
it does not occur with three dimensional stress states.  Thus there is a large 
region of ductile fracture evident in Fig. 6. 
 
 The failure number, as specified by (7) and by failure criteria (1) and 
(2) does give a scale or ranking for the degree of ductility of different stress 
states for any particular isotropic material specified by its T/C value.  This is 
somewhat like the role and function of the Reynolds number for fluids.  
Both the Reynolds number, Re, and the failure number, Fn, provide gages 
upon the expected behavior due to control/domination by an inherent 
nonlinear physical effect, inertial in the former case and failure in the latter.  
The difference is that the Reynolds number is for broad classes of flow types 
while the failure number is explicit and specific to any particular failure 
mode.   
 

It would not be expected that the failure number would have the same 
widespread appeal as the Reynolds number does, it is a little too complicated 
for that.  But Fn does reveal that there is an underlying logical basis for 
expecting and predicting degrees of ductility in failure as a function of the 
materials type and the imposed state of stress.  No less than that should be 
expected from any legitimate and comprehensive failure criterion.  
Furthermore, the failure criteria (1) and (2) and the failure number (ductility 
level), (7), are very amenable to use with finite element codes in design. 
 
 Although the main thrust of this website was outlined in the 
introductory section, Section I, it is worth briefly repeating it here.  This 
“book” explores, delineates, and codifies the main aspects of three 
dimensional failure criteria for materials.  It does not take the place of peer 
reviewed archive papers, rather it builds upon such contributions.  As such, 
this work involves interpretations of the subtleties of materials failure 
behavior.  Nowhere are the difficulties more complex or more subtle than 
with characterizing ductility and its deleterious complement, brittleness. 
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