
 

 

 

 

 

IV.  CUMULATIVE DAMAGE LEADING TO FATIGUE AND CREEP FAILURE FOR 

GENERAL MATERIALS 

 

 

   Of the various headings under mechanics of materials, failure is usually 

considered to be the most difficult one. Then proceeding further to the sub-

fields under failure, probably fatigue is considered to be its most difficult one.  

The concept of damage comes into play with fatigue, but deducing useful and 

reasonably general damage forms has been a taxing and uncertain exercise.  

The organized attempts to quantify damage usually fall under the subject of 

cumulative damage with the understanding that the damage leads to and 

terminates with materials failure.  

 

   Quantifying damage relative to failure allows the optimization of stress 

loading  programs and allows the means for including overload type damage 

events.  Although this website is not aimed as a literature survey, this section 

will be used to examine several different approaches for cumulative damage.  

The possible applications are to isotropic or anisotropic materials (including 

composites) with the proviso that in either case the conditions of proportional 

loading apply. 

 

   Creep rupture also comes under the heading of cumulative damage.  Creep 

rupture is the time dependent damage growth leading to failure in polymers 

and in metals at high temperature.  As developed here, fatigue conditions and 

creep rupture conditions admit the same general formulation.  Both will be 

treated and with suitable notational changes either form can be found from the 

other. 

 

    There are considered to be two main approaches for cumulative damage.  

One is that of the direct postulation of lifetime damage forms such as Miner’s 

rule and the other is that of residual strength.  Residual strength is the reduced 

(instantaneous) static strength that the material can still deliver after being 
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subjected to loads causing damage.  Of course both are relevant to the general 

problem and a well founded cumulative damage theory must contain both 

descriptions in a compatible form.  The overall objective of both and of all 

approaches is to secure a life prediction methodology. 

 

   In the area of the fatigue of metals, a  common approach is to assume a pre-

existing crack that grows according to a power law form with regard to the 

stress level.  This is often called the Paris law.  When  the crack reaches a 

certain pre-specified size, the service life is considered to be completed.  

While this is certainly a useful approach it cannot be considered to be a life 

prediction methodology based upon the approach to failure.  Accordingly it 

will not be followed here. 

 

   The general topics of fatigue or of damage are covered in many self 

contained, inclusive books such as Suresh [1] and Krajcinovic [ 2].  As part of 

a general damage approach, constitutive relations are often taken for damage 

involving scalar or tensor valued damage variables and a whole framework of 

behavior is built up.  In a considerably different direction to be followed here, 

cumulative damage leading to failure is more akin to failure criteria, but with 

the capability to characterize damage as the prelude to failure.  The first 

credible damage form was that of Miner’s rule [3].   Broutman and Sahu [4] 

and Hashin and Rotem  [5]  much later produced other damage forms that 

with the passage of time have gained credibility.  Reifsnider [6] initiated a 

different damage formalism which has been further developed by him and 

others in other papers.  Other also notable efforts have been given by Adam et 

al [7] and by many other workers.  Christensen [8]  recently developed a new 

and different approach.  Post, Case, and Lesko [9] have recently given a 

survey of many different cumulative damage models and applied them to 

situations of spectrum type loadings for composites. 

 

   Due to the complexity of the topic many approaches and models contain 

adjustable parameters, sometimes many parameters.  In the coverage 

undertaken here only models without any adjustable parameters will be 

considered.  That is to say, the damage formulations to be considered will be 

based solely upon the properties contained within a database of constant 

amplitude fatigue or creep testing and the static strength.  Then the damage 

forms will be used to predict life under variable amplitude programs of load 



application.  This circumstance is analogous to viscoelastic behavior where 

mechanical properties of creep or relaxation function type are inserted into 

convolution integrals to predict general behavior.  Materials with memory 

could encompass viscoelastic effects at one extreme, and damage memory 

effects at the other extreme.  The four damage models to be examined here are 

those of Miner’s rule, Hashin-Rotem,  Broutman-Sahu, and then the recently 

developed one by Christensen.  The Broutman-Sahu form is representative of 

a large class of models, as will be explained later. 

 

   In terms of evaluating damage models, there does not appear to be any 

definitive set or sets of experimental data.  The problem is the lack of 

repeatability and in a more general sense the great variability in the data.  This 

places even more emphasis on the need for a careful theoretical evaluation, 

looking for physical consistency in the predictions and conversely examining 

aspects of inconsistency in important special cases. 

 

   Three main problems will be used to evaluate the four models.  These 

include examples of prescribed major damage followed by the predicted life at 

a lower, safer stress level.  Another problem is that of the ability to predict 

residual instantaneous strength after a long time load application that 

nevertheless is shorter than that time which would cause fatigue or creep 

failure.  Thirdly is the problem of residual life.  In this situation a load is 

applied right up to the time of, but just an instant before, fatigue or creep 

failure.  At that time the load is removed and replaced by one of a lower, less 

stringent level.  The additional life that results at the lower stress level is 

designated as the residual life. 

 

   All of these models and methods are taken from the peer reviewed literature.  

The new dimension which is added here is that of a more inclusive theoretical 

evaluation than appears to have been previously given. 

 

 

 Four  Alternative Approaches 

 

 

   The general concept of damage that would or could lead to failure was  

rather vague and nebulous until Miner gave it a specific form and it became 



recognized.  With background from Palmgren, Miner [3] postulated the 

damage form for fatigue as 
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where ni is the number of applied cycles at nominal stress !i and Ni is the 

limit number of cycles to failure at the same stress and for the same cycle 

type.  Thus each value ni/Ni is viewed as a quanta of damage, the sum of 

which specifies failure.  As with all cumulative damage forms, when the left 

hand side of (1) is less than one, it still quantifies the damage level but does 

not imply failure.  The spectrum of values of  N(  ) versus constant stress, !, is 

as shown in Fig. 1.  Relation (1) then allows the life prediction for a 

combination of different load levels.  All of the fatigue conditions considered 

here will be taken to be of the same frequency and cycle type.   

 

 

 
Fig. 1  Fatigue Life at Constant Stress 

 

 



    Relation (1) is a completely empirical form but it was a reasonable 

conjecture at the time.  It is usually called Miner’s rule.  It also sometimes 

goes by the name Palmgren-Miner rule or law and also by the term Linear 

Cumulative Damage. 

 

   The first evidence of possible inadequacy of Miner’s rule is that it predicts 

the independence of the order of application of the loads leading to failure, so 

long as the duration of each sequence of cycles is preserved.  Despite the 

shortcomings which will be shown in the following evaluation, Miner’s rule 

has always been by far the most widely used cumulative damage form. 

 

    Writing Miner’s rule in its two step form gives 
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Hashin and Rotem [5] recognized that there could be a problem with the 

calibration of the first term relative to the second.  Specifically, for a given 

proportion of the life being expended in step 1 at stress level !1, this 

proportion of the expended life would be expected to be different relative to 

the following stress level of step 2.  With a set of conditions and assumptions 

they modified (2) to the form 
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For more than  two steps, the form (3) can be applied iteratively.  The form (3) 

can also be modified to accommodate a continuous variation of n/N, but the 

result is quite complex and not needed here. 

 



   In a completely different approach the problem of residual strength can be 

approached.  Residual strength is the static strength that  would exist if a 

fatigue test were interrupted and tested to failure in the usual static strength 

manner.  One of the simplest possible residual strength forms was given by 

Broutman and Sahu [4].  It states the residual strength !R as  
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where !s is the instantaneous tensile static strength as measured on the virgin 

material before any fatigue damage is induced.   At !i = !s (with !i being the 

maximum stress in the cycle) this residual strength form properly reduces to 

the static strength.  The form (4) is emblematic of a much larger class of 

models whereby   (!s - !i) and (ni /Ni) are each raised to some different 

power, thus introducing adjustable parameters to be determined into the 

process. 

 

   The life of the material under a prescribed stress program is implicit in (4) 

and determined by the total number of cycles at which !R = !i, the nominal 

(maximum) applied stress and the residual strength become identical.  Before 

this number of cycles, the residual strength is greater than the applied 

maximum stress but less than the static strength. 

 

    At this point it is convenient to recast these fatigue forms into analogous 

creep rupture forms.  Creep rupture occurs in polymers and in metals at high 

temperature.  Let tc(!) be the time to failure under constant stress !.  Miner’s 

rule (1) for creep conditions then takes the form 
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where stress is nondimensionalized by the static strength 
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and time is nondimensionalized by a time constant, t0 which  calibrates the 

time scale, 
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The basic property 
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˜ t 
c

˜ " ( ) gives the failure times versus the constant stress 

levels, as shown in Fig. 1 but for creep rupture rather than fatigue. 

 

 

   The Hashin-Rotem fatigue form (3) then for a two step creep condition 

becomes 
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where 
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   The Broutman-Sahu residual strength fatigue form (4) becomes the creep 

condition residual strength as 
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The corresponding lifetime form for Broutman-Sahu is found by taking 

! 

˜ " 
R
t( ) = ˜ " t( )  in (7) to get 
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Compare (8) with the Miner’s rule form (5).  Considerable differences must 

be expected. 

 

   Now a recently derived fourth model will be introduced.  In a program to 

develop a physically based flaw growth model, Christensen [8] has obtained a 

new formalism.  Since a complete flaw growth method cannot simply be 

postulated, its derivation will be outlined here in a brief manner.  The 

manuscript for this work can be downloaded from the homepage. 

 

   Take an existing microscale crack and  specify its rate of growth according 

to a power law as 
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where the crack size a(t) and the stress   !(t) are functions of time, r is the 

power law exponent, and " is a constant. 

 

   Integrate (9) to get 
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where a0 is the initial crack size. 

 

    Following classical fracture mechanics as an initial approach, take the crack  

as growing to a size that becomes unstable when it reaches the same stress 

intensity factor as that which gives the static strength, !s , thus 
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   Combining (10) and (11) then gives a life prediction form to be solved for 

the lifetime t under a prescribed stress history !(t).  When this form is 

specialized to the constant stress case, the creep rupture time to failure is 

found to be given by 
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where nondimensional stress and nondimensional time will be used from this 

point on.  Relation (12)  has a behavior as shown in the first case of Fig. 2 

below on log-log scales.  At long time there is a power law behavior 

controlled by the exponent r and at short time it approaches the static strength 

asymptote.  That much is perfectly acceptable.  However, the form (12) 

exhibits a rather sharp transition from one asymptote to the other.  Most data 

show a more gradual transition.  Thus a more general approach is required , 

although the form (12) could remain as a special case.  The single, isolated, 

ideal crack is of limited value in understanding the explicit failure of 

homogeneous materials.  It gives useful, qualitative guidelines but not the  

concrete, quantitative results that  can be used in applications. 

 

   Going back to relation (11) which gives the criterion for unstable growth of 

the crack, it must be considered as being inadequate.  Instead, replace (11) by 

the more general form 
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where 
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and F(  ) is a function of stress yet to be determined.  The necessity for this 

generalization beyond the behavior of a single ideal crack relates to more 

complex matters such as the possible interaction between cracks, crack 

coalescence and many other non-ideal types of damage and damage growth.  

The basic flaw growth relation (9) will be retained, but now a(t) represents 

some more general measure of flaw size as it grows. 



 

       
             

 

Fig. 2  Determination of Exponent “r” from Creep Rupture at Constant Stress 

    



Combining (10) and (13) gives 
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and where the various properties combine to form the calibrating time 

constant. 

 

 

   For constant stress, relation (14) becomes 
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˜ " ( ) is the spectrum of creep rupture properties at stress levels 
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taken to be known from tests. 

 

 

   Finally, substituting (16) into (14) gives the flaw growth lifetime criterion as 
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For a given stress history 

! 

˜ " #( ) , relation (17) determines the lifetime, 

! 

˜ t  , of 

the material.  The exponent r is determined from the  basic creep rupture 

forms as shown in Fig. 2.  The creep rupture properties and its specific 

property r  calibrate the theory behind the life prediction form  (17).  It is not 

surprising that the property 
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˜ t 
c

˜ " ( ) in (17) is at current time, 
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˜ t , rather than 

being inside the integral as in the other models.  This relates to the method 

whereby the flaw grows until it reaches a critical size at the then existing 

current stress.  This present approach also admits a full statistical 

generalization, see Christensen [8].  The manuscript of this published work 

can be downloaded from the www.FailureCriteria.com homepage. 

 

   The four basic forms under consideration here, Miner’s rule, Hashin-Rotem, 

Broutman-Sahu, and the present form are respectively given by (5), (6), (8), 

and (17),  It is important to observe that all of these are completely  calibrated 

by and determined by only the basic experimentally determined creep rupture 

property 

! 

˜ t 
c

˜ " ( ) and the static strength.  There are no additional parameters to 

be adjusted or fine tuned.  Apparently these four are the only forms that have 

been proposed or derived that do not involve additional parameters beyond the 

mechanical properties. 

 

   It is interesting to note that there is a special case in which two of these 

basic forms become identical.  Specifically for a creep rupture property of the 

power law type, as in 
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then Miner’s rule (5) and the present form (17) reduce to the same form.  This 

is shown directly by substituting (18) into each of these.  Otherwise these two 

forms make completely different predictions, sometimes extremely different 

predictions.  In this power law special case, (18), the creep rupture conforms 

to the limiting (degenerate) case show in Fig. 3. 



 

 

 
Fig. 3  Creep Rupture Power Law Behavior 

 

 

   In physical reality there probably is no such thing as true power law 

behavior.  It is however a convenient mathematical approximation in some 

cases.  However, care must be taken using power law idealizations to 

represent real data because slight deviations from the data on log scales can 

cause large differences in actual life predictions. 

 

   The residual strength form corresponding to the damage/lifetime form (17) 

is given by 
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   The residual strength form of the Broutman-Sahu type is given by (7).  The 

other two models don’t directly give a residual strength determination. 



 

     The fatigue life forms for the first two models are given by Miner’s rule (1) 

and Hashin-Rotem (3).  The Broutman-Sahu form for fatigue life is given 

from (4) by setting !R = !i .  The fatigue life form from the present derivation 

is given by 
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where exponent r is given by the basic fatigue property envelope at constant 

amplitude, the same as in the creep rupture curves of Fig. 2. 

 

   This completes the background and specification of the four basic forms 

under consideration.  Now a comparative evaluation of these forms will be 

given using the creep failure notation. 

 

 

Residual Strength 

 

 

   When a general program of stress history is interrupted and suddenly tested 

for static strength, Fig. 4, the residual strength, !R , is determined. 

 

 



 
 

Fig. 4  Residual Strength 

 

 

Under constant stress 
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   Under constant stress until time 
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To determine 
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 from (22) requires knowledge of the range of values for 
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value of stress.  This difference has important implications as will be seen 

next. 

 

   Consider two different creep rupture envelopes 1 and 2 in Fig. 5. 

 

 

 
 

Fig. 5  Residual Strength for Two Cases 

 

 

A time line through the intersection point between envelopes 1 and 2 will be 

used to establish the stress level for residual strength determination.  At any 

time point on the (dashed) time line in Fig. 5 the Broutman-Sahu prediction 

(21) will give the same !R for Case 1 as for Case 2.  It cannot distinguish 

creep rupture curve 1 from 2 in these cases, and for this reason its behavior is 

inconsistent and probably unacceptable.  The present method (22) does have 

the capability to distinguish Cases 1 and 2. 

 

   The Miner’s rule and the Hashin-Rotem methods do not have the  direct 

capability to make a prediction for 
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Damage/Life Examples 

 

 

   Another useful way to compare the models is to consider the remaining life 

after a major damage event.  To simulate this, a two step loading program will 

be taken with the first step, of specified duration, being at a high stress 

overload, and the second step consisting of the service level stress up to 

failure. 

 

   The four damage models from (5), (6), (8), and (17)  in this two step form 

are  given by  

 

 

Miner’s Rule 
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Hashin-Rotem 
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Broutman-Sahu 
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where index 1 refers to the first step and index 2 the second, and as before 

with 
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   Before going to the examples, a significant difference in the models can be 

seen from (23)-(26).  In each case the first term represents the damage due to  

the stress overload and the second term gives the normal accrual of damage at 

the service stress level, up to failure.  The second terms in (23)-(26) are 

identical.  Only the first terms, the major damage terms in the following 

examples, are fundamentally different.  The first three forms have the first 

terms in them as mainly controlled by 
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˜ t 
c1

 but the last form, (26), has its first 



term as influenced by 

! 

˜ t 
c2

 .  The effective creep rupture time  controlling the 

damage in the first step of (26) is as shown in Fig. 6. 

 

 

 
Fig. 6  Effective Creep Rupture Time, First Step of (26) 

 

 

 From a damage growth point of view, for step 1 the damage grows up until 

time 
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 may be.  

The present model, (26), calibrates the first step damage relative to that which 

ultimately causes failure, 
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 , not to the hypothetical level given by 
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   The two damage/life examples to be given are specified by 
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0.9.  The governing creep rupture curves are as shown schematically in Fig. 7.  

Case B represents that of a power law behavior as specified by the power 10, 

which is in the range of polymer behavior. 

 

 
Fig. 7  Creep Rupture Curves for Cases A and B 



    

Let the lifetime  

! 

˜ t  be specified by 
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with 
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"˜ t  designating the remaining life after the inflicted damage state of the 

first step.  The results predicted by (23)-(26) are given below 

 

 

Remaining Life, 
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 Present Broutman-

Sahu 

Hashin-

Rotem 

Miner’s Rule 

Case A 96,787. 82,000. 40,951. 10,000. 

Case B 10,000. 82,000. 19,366. 10,000. 

 

 

If there were negligible damage from the first step, the remaining life would 

be 10
5
.  Comparing the four models for Case A shows the present model to 

give the least damage in the first step while Miner’s rule gives by far the most 

damage, resulting in the shortest remaining life.  There is no consistency 

between any of the models, they all make completely distinct predictions in 

this case. 

 

   Comparing the four models for the power law form, Case B, Broutman-Sahu 

gives a unrealistically small amount of damage (large remaining life) while 

the other three models are about the same at small values of remaining life. 

 

   As seen from the above table Miner’s rule and Broutman-Sahu cannot 

distinguish the amount of stress overload damage between Cases A and B 

even though the duration of the stress overload is 28 times greater in Case B 

than it is in Case A.  It is only the present model that properly shows the 

strong effect in going from Case A to Case B. 

 

 



Residual Life 

 

 

   As the final evaluation condition, the problem of residual life will be posed.  

For a given program of stress history, if the load were terminated just an 

instant before failure, the question is what would be the additional life at a 

reduced stress level.  This is called the residual life problem  Of course it 

would be extremely difficult to conduct this as an actual physical experiment 

because of the usual scatter in the data.  However, it is very useful to use this 

as a conceptual test with various deterministic models to see which ones 

predict reasonable results and which ones predict unrealistic and unacceptable 

results. 

 

   The problem will now be posed in its simplest form as a  two step process.  

The duration of the first step is taken as 
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will be revealing to see which models involve both of these physical 

properties. 

 

   Let the residual life beyond step 1 be notated as  
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From (8) the Broutman-Sahu prediction for the residual life is given by 

 

 

 

! 

˜ t 
R

=
˜ " 

1
# ˜ " 

2

1# ˜ " 
2

$ 

% 
& 

' 

( 
) ̃  t 

c2
 (27) 

 

 

From (17) the present prediction for the residual life is given by 
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   Miner’s rule, (5), and Hashin-Rotem, (6), both predict that there is no 

remaining residual life even though the stress level is reduced.  It is seen that 

only the present model brings both 
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 and 
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 into the residual life prediction. 

 

 

 

   As an example of residual life take 
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The residual life predictions are 
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Conclusion 

 

 

   The three model testing conditions: damage/life, residual strength, and 

residual life, show that the present model is the only one of the four that 

satisfies these consistency tests.  More specifically, the damage/life examples 

reveal the importance of the maximum slope of the creep rupture-life 

envelope on log-log scales, Fig. 2.  Only the present model includes this 

characteristic, as property r in (17).  This property is important because it 

calibrates the kinetics of the flaw growth process.  Without this defining 

property, two points on a stress versus life envelope cannot distinguish power 

law behavior from anything else.  It is analogous to trying to define curvature 

by only two points.  With this property included, it can be shown from (17) 

that in general for two step programs of loading, the high stress to low stress 

sequence produces longer lifetimes than does the low to high sequence.  

General observations usually confirm this specific sequence effect, Found and 

Quaresimin [10].  Miner’s rule says there is no sequence effect. Interested 

readers could examine other models and deduce other conditions of evaluation 

in addition to those considered here.   
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