
 XVIII.  A NEW THEORY OF STRAIN HARDENING AND 
ITS CONSEQUENCES FOR YIELD STRESS 
AND FAILURE STRESS 

 
 
Introduction 
 
     It is almost as though the entire technical field gave up on trying to define 
yield stress and failure stress in the critical condition of uniaxial tension.  
There is no agreement on meaningful physical definitions of either, only an 
arbitrary offset rule that is often used with metals.  As the result, all 
compilations of materials properties data have no guiding standards.  
Strength is often listed as ultimate strength, meaning the final fragmentation 
into pieces.  Yield seems to have something to do with the end of the range 
of elastic behavior but not much more than that.  Both are vague and loose 
concepts. 
 
     In recent work Christensen [1] devoted an entire chapter in a new book 
on materials failure to the subject of defining yield stress and failure stress.  
The present work takes that preceding examination much further. 
 
     The traditional approach separates failure into ductile versus brittle types 
without using a rigorous treatment of what ductility really means.  The 
brittle case is taken to have yield stress coincident with immediate failure.  
So all attention focused upon the much more complex ductile case, more 
specifically the behavior of very ductile metals. The common approach was 
to separate the behavior into the elastic range and the plastic range.  Yield 
stress was taken to provide a separation between the two ranges of behavior.  
The elastic range would switch over to the strain hardening plastic range, 
which would typically extend to large strains, sometimes even very large 
strains. 
 
     The ensuing complication was and is that at very large deformations in 
uniaxial tension the actual stress at failure is hardly indicative of a general 
measure of strength.  Molecular, nanoscale changes in the material 
architecture at very large deformations make the results peculiar to uniaxial 
tension and by no means transferrable through a failure theory to behavior in 
other stress states.  This leaves the definition of failure stress in an 
ambiguous state. 
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     Failure stress (strength) would typically be taken as the limit of the 
plastic range.  In trying to understand strength, the focus was always taken 
upon the strain hardening plastic range.  It was taken as an obvious truth that 
failure could be understood and quantified only if the strain hardening range 
were to be understood in enough detail to lead to the explicit understanding 
of its termination by breakage, fragmentation.   
 
     That point of view prevailed decade after decade, century after century 
until finally a new, a drastically different reasoning was brought forward.  
Christensen [1] argued that failure most fundamentally represents the 
termination of the elastic range of behavior, not the following plastic range.  
The plastic range of behavior is “real” and very important, but it is not the 
key to understanding failure.  The plastic range merely represents the 
transition from the elastic range to the failure state, no more, no less.  This 
new point of view completely changes the theoretical approach to describing 
and defining failure, Ref. [1]. 
 
     With this new point of view on failure, it is still found to be necessary to 
understand the strain hardening range of plastic behavior.  This may seem to 
be contradictory after what has just been said but actually it is not.  Strain 
hardening must be understood in its relationship to the preceding elastic 
behavior in order to properly define yield stress.  And the rigorous definition 
of yield stress will be found to be necessary in order to properly define 
failure stress.  So the following account will detail the critical examinations 
of the three separate and distinct topics of (i) strain hardening, (ii) yield 
stress, and (iii) failure stress.  This account will begin by developing a new 
theory of strain hardening. 
 
     Strain hardening has always been treated empirically.  Sometimes this 
range of the stress-strain relation has been taken in a power law form with 
the exponent to be determined and sometimes simply in parabolic form.  
Corresponding plasticity theories have been developed, Hill [2], Kachanov 
[3], and Lubliner [4].  The limiting case of strain hardening is that of elastic- 
perfectly plastic behavior, Prager and Hodge [5].  Strain hardening is 
certainly more complex than elastic behavior or elastic-perfectly plastic 
behavior and perhaps that is why it has only been treated empirically, with 
the apparent assumption that it is too difficult to be more specific.  The 
present work will prove otherwise. 
 



     The single stress state of uniaxial tension has always been taken to be by 
far the most important single stress state.  For all historical purposes that was 
the state for which data were and are reported and properties assigned.  
Uniaxial tensile properties are also of prime importance in constructing 
failure theory.  It provides the “cornerstone” for calibrating the failure 
theory.  Accordingly the present account will focus exclusively on the state 
of uniaxial tension for all matters of ductility, strain hardening, yield stress 
and failure stress.  Computational applications under three-dimensional 
conditions and related open questions for all these matters will be discussed 
in the final section.  
 
 
A New and Basic Theory of Strain Hardening 
 
     Elastic-plastic deformation of very ductile metals is usually and 
initially viewed as that of elastic-perfectly plastic deformation.  This highly 
idealized state is as shown in Fig. 1. 
 
 

 
 

Fig. 1   Elastic-perfectly plastic solid 
 
 
The yield stress and the failure stress are coincident and the yield strain is 
correspondingly specified, failure strain is not specified. 
 
     The discontinuity of modulus shown in Fig. 1 is never actually realized, 
such extreme behavior is not physically possible in engineering materials.  
Physical reality always rounds the corner shown in Fig. 1 to be more like the 
form shown in Fig. 2. 



 
 

 
 

Fig. 2   More realistic behavior for σ  vs. ε  
 
 
In this case the yield stress and the failure stress become differentiated.  
More specifically, now take the still idealized stress-strain form as in Fig. 3. 
 
 

 
 

Fig. 3   Elastic, strain hardening behavior 
 
 
The elastic modulus E is designated in Fig. 3 and the yield stress σ y  is 
taken as that at the terminus of the linear elastic range.  The overall 
idealization is still taken as that appropriate to very ductile metals. 
 
     To proceed further a quit specific assumption will be invoked.  For these 
homogeneous and isotropic materials, the stress-strain form is taken to 



asymptotically approach a limiting failure stress σ f  consistent with the 
elastic range ultimately being terminated by failure, after the strain 
hardening. 
 
   The elastic range is specified by either of the forms 
 
For ε < ε y   

 

σ = Eε
dσ
dε

= E
  (1) 

 
The second form will have an interesting and unexpected relationship to the 
strain hardening form to be found later.  At this point the exact nature of the 
yield stress and yield strain has not been specified.  That will carefully be 
defined later.  For present purposes the perfectly elastic region is 
differentiated from the strain hardening region by (1). 
 
      Next the strain hardening region must be brought into consideration.  
The strain hardening region of elastic-plastic behavior has always been 
treated empirically.  Usually it has been taken in a power law form between 
σ  and ε  but sometimes it has been given a parabolic form.  The essential 
purpose here is to avoid making any particular  assumption about its form 
but rather to derive it from basic considerations.  While this possibility may 
seem to be unlikely considering the intense attention that has been expended 
upon this problem for so many years, there still remains a new approach for 
the problem, as will now be given. 
 
     The plastic deformation in highly ductile metals is caused by the flow of 
dislocations.  As a dislocation moves through one atomic spacing in the 
crystal lattice, the atomic bond is ruptured with one adjacent atom and 
reformed with the next atom.  All this transpires a stress level high enough to 
overcome the energy barrier holding the atoms in place. 
 
    There is another class of problems that involves a similar sequence of 
bond breakage followed by the formation of new bonds.  This field is that of 
chemical reaction rate kinetics, Connors [6].  Reaction rate kinetics are 
found to be controlled by first order differential equations and they have 



proven to be very successful.  The counterpart of reaction rate kinetics is 
taken here for the strain hardening behavior in elastic-plastic solids. 
 
     The strain hardening region is specified in the form corresponding to 1st 
order reaction rate kinetics as 
 
For ε ≥ ε y   
 

 
dσ
dε

=α σ f −σ( )   (2) 

 
The increment of increasing stress is due to an increment of increasing strain 
in proportion to (σ f −σ ).  Thus (σ f −σ ) is the driving force for the 

strain hardening effect with σ f  being the failure stress.  Parameter α  in (2) 
is as yet unspecified.  Parameter α  is some nondimensional property of the 
material and it is yet to be determined, perhaps in terms of the other 
properties of the problem. 
 
     This 1st order ordinary differential equation (2) is taken as the balance 
law controlling the strain hardening as it progresses with increasing strains.  
The starting information for the problem is the elastic modulus, the yield 
stress, and the failure stress, as 
 
 E, σ y , and σ f   
 
The given yield strain is then 
 

 ε y =
σ y

E
  

 
     The initial conditions are specified by 
 
At ε = ε y   
 
 σ =σ y   (3) 



 

 
dσ
dε

= E   (4) 

 
     The complete strain hardening solution of (2) satisfying (3) and (4) is 
given by 
 

 σ =σ y +σ 0 1− e
−α ε−ε y( )⎡

⎣⎢
⎤
⎦⎥   (5) 

 
where 
 
 σ 0 =σ f −σ y   (6) 
 

 α = E
σ 0

  (7) 

 
Thus parameter α  given by (7) controls the rate at which the strain 
hardening stress-strain curve approaches the asymptote σ f . 
 
     There is a crucial observation to be made concerning the solution (5).  
The key step in the derivation is the knowledge that the finite failure stress 
exists.  The failure stress σ f  doesn’t have to be specified in value, only its 

existence is required.  From the solution (5)-(7) σ 0  and thereby σ f  can be 

determined by a data point σ 1, ε1 on the stress-strain record.  From (5)-(7)  
 

 
σ 0

E
Ln 1−

σ 1 −σ y

σ 0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = ε y − ε1   (8) 

 
After solving this for σ 0  and then σ f  from (6) the complete strain 
hardening form for a particular material is known.  An example will be 
given later but the solution (5) has all the usual characteristics of standard 
strain hardening data forms. 



 
     This theory of strain hardening started with the idealized behavior of 
highly ductile metals.  But the resulting solution (5) is not limited to just the 
dislocation sourced plasticity of very ductile metals.  This is because failure 
itself is an intrinsic property of any isotropic material and it is intimately 
related to the elastic range of behavior.  Failure is not controlled by the usual 
plasticity motivated facets of behavior.  Plasticity itself does not dictate and 
control failure, it is but the interim path between elasticity and failure.  It is 
the separate entities of elasticity and failure that are primal. 
 
     Combining the two solution forms (6) and (7) with (2) gives 
 

 
dσ
dε

= E
σ f −σ
σ f −σ y

⎛

⎝⎜
⎞

⎠⎟
  (9) 

 
This controlling form (9) for strain hardening is even more transparent than 
is the starting form (2), especially when compared with the elasticity form 
(1b).  Relation (9) embodies the complete behavior involved in going over 
the range σ y ≤σ ≤σ f .  The solution (5) follows directly from (9).  If 
stress is nondimensionalized by E then (9) takes a remarkably simple 
nondimensional form.  
 
     No matter what the material type may be, the solution of the first order 
differential equation (9) represents the breakage and in some cases the 
reformation of atomic bonds.  It not only applies to highly ductile metals, it 
also applies as the strain hardening solution for all isotropic materials up to 
the point of strains large enough to begin introducing other extraneous 
nonlinear effects such as anisotropic effects due to grain alignments and 
molecular orientations in the loading direction. 
 
     Finally, one further observation is relevant.  The controlling form (9) is 
the strain hardening counterpart of 1st order reaction rate kinetics.  Second 
order reaction rate kinetics would involve raising the right hand side 
parenthesis term in (9) to the power 2, Connors [6].  Yet higher order forms 
follow similarly.  Although such forms could be easily solved, it is believed 
that the first order form is that which applies to the strain hardening 
problem.  The higher order forms would move toward the elastic-perfectly 
plastic case. 



 
     This strain hardening form for uniaxial tension can be converted to that 
for other states of stress using three dimensional plasticity theory. 
 
 
Yield Stress as a 3rd Order Transition 
 
     Next a deeper look at yield stress will be undertaken.  How should yield 
stress be formally defined?  In the previous section that task was deferred 
until later.  It was merely said that yield stress separates the purely elastic 
region from the strain hardening region. 
 
     The strain hardening solution (5)-(7) will now be used to be more specific 
about the meaning of the yield stress.  Transitions have an important role to 
play in materials science.  In the sense given by Ehrenfest the freezing of a 
liquid to become a solid is a 1st order transition, that of phase change.  This 
involves the change of the free energy.  An example of a 2nd order transition 
would be that of a martensitic transformation for steel.  In the present 
context, the discontinuous change of the tangent modulus for the elastic-
perfectly plastic solid of Fig. 1 would also be a 2nd order transition, if it were 
to occur, but which does not happen.   
 
     Going one step further from the constitutive form (1) in the elastic region 
and (5)-(7) for the strain hardening region, it is found that 
 
For ε < ε y   
 

 
d 2σ
dε 2

= 0   (10) 

 
For ε ≥ ε y   
 

 
d 2σ
dε 2

= − E
2

σ 0

e
− E
σ 0

ε−ε y( )
  (11) 

 



Fig. 4 schematically shows the behavior of the second derivative in (10) 
and(11). 
 

 

 
 

Fig. 4   Discontinuity in second derivative of stress-strain 
 
 
It is seen from Fig. 4 that the material has undergone a classical 3rd order 
transition in traversing from the elastic state and region to the strain 
hardening state and region. 
 
     Thus in the present theory yield stress is a 3rd order transition.  This 
would not be a change in the crystal structure in the case of very ductile 
metals but rather something more complicated.  In the case of very ductile 
metals this would be the ideal situation of the activation of slip systems and 
the simultaneous advent of the massive flow of dislocations.  In the case of 
more general metals it could be void formation.  Even more generally than 
ductile metals, it could be the formation of weakened regions that still 
retains solids character.  This would be the first indication of damage 
initiation.  Thereafter the damage state would begin to grow and intensify. 
 
     This use of the interpretation of yield stress as a 3rd order transition 
should not be confused with the use of 1st order reaction rate theory in the 
previous section to solve for the behavior in the strain hardening region.  
The two separate order designations refer to completely different physical 
effects. 
 



     In the general treatment of failure theory for isotropic materials, 
Christensen [1], the yield stress was defined as that value of stress at which 
the magnitude of the second derivative d 2σ / dε 2  attains a maximum.  
From Fig. 4 it is seen that this previous definition of yield stress is 
completely compatible with the present definition as a 3rd order transition.  
In physical reality, it would not be likely that the perfectly idealized 3rd order 
transition would be or could be realized.  Defects and local inhomogeneities 
would be very likely to “smear” it out into a more smooth, but still rapidly 
varying form compatible with the yield criterion in Ref. [1].  Nevertheless it 
is very helpful to see and reveal that the driving force for the appearance of 
the yield stress is that of moving toward a 3rd order transition. 
 
     The end result of these deliberations is that the effective yield stress is 
that point at which the linear stress-strain behavior deteriorates from 
linearity into the strain hardening behavior, either because of a 3rd order 
transition or the driving force moving the material behavior toward that 
idealized behavior.  At the yield stress the constitutive relation changes from 
that of linear elasticity to that of strain hardening (9). 
 
     Implicit in this definition of yield stress for all isotropic materials is that 
of the existence of a finite failure stress σ f .  This requirement will be 
considered further in the next two sections. 
 
 
Ductility and Failure Strain in Idealized Elastic-Perfectly Plastic Solids 
 
     In the previous sections the term ductility has been used and  appealed to 
without benefit of definition.  Now it is time to be more specific about the 
meaning of ductility.  Considerations will begin with the highly idealized 
behavior of elastic-perfectly plastic solids, just as it did with the yield stress 
developments. 
 
     The elastic-perfectly plastic case is as shown in Fig. 1.  This case of 
idealized uniaxial tensile behavior must include the possibility of failure.  If 
the strain to failure were quite large then the behavior is as shown in Fig. 5 
 
 



 
 

Fig. 5   Extremely ductile failure 
 
 
Alternatively if the strain to failure was very close to the yield strain then 
that is brittle failure as shown in Fig. 6. 
 
 

 
 

Fig. 6   Extremely brittle failure 
 
 
Of course the case in Fig. 6 includes the perfectly brittle case with ε f = ε y . 
 
     A metric is needed that can distinguish the two cases of Figs. 5 and 6.  
The only available variable to be used for this purpose is uniaxial strain 
since only the uniaxial tensile case is being considered.  To that end, take the 
following strain based criterion as a measure of ductility 
 



 Λ =
ε f − ε y
ε y

  (12) 

 
It follows that the two cases of Figs. 5 and 6 being considered are specified 
by 
 

 

 

Λ≫1 Extremely ductile

Λ≪1 Extremely brittle
  (13) 

 
Thus Λ  from (12) characterizes the two physical limits and also gives a 
quantitative measure of ductility for all cases in between.  This probably is 
as much as could be done for ductility when limited to only the one variable, 
the uniaxial strain in tension.  Nevertheless this is valuable information.  In 
fact it is virtually the universal manner used for characterizing ductility and 
formula (12) is the logical formalization of this method. 
 
     Next these results are used to gain entry into the subject of failure.  
Starting with ductility given by (12) and the two near limiting cases of (13) 
there is one other case of a ductility measure that is accessible using only 
(12).  This case is that of 
 
 Λ = 1 Significant ductility   (14) 
 
This case is labeled as that of significant ductility because combining (12) 
and (14) gives 
 

ε f = 2ε y   (15) 
 
And this case is as shown in Fig. 7. 
 
 



 
 

Fig. 7   Significant ductility at failure 
 
 
     If strain were to be decomposed into elastic and plastic parts for the case 
of (14) and (15) and Fig.7, then the plastic strain is the same size as the 
elastic strain.  This is certainly the situation where the ductility becomes 
significant and not just negligible. 
 
     It could be tempting to try to interpret the case of ε f = 2ε y  as that of 
the ductile/brittle transition but that would be incorrect.  There is no physical 
basis for interpreting ε f = 2ε y  as a transition in the way that ε y  was 
shown to be a 3rd order transition, or a close approximation to it.  A complete 
treatment of the ductile/brittle transition requires far more information than 
is available from just the uniaxial tensile failure, see Ref. [1].  But 
ε f = 2ε y  may have some special significance for a rational failure 
interpretation and specification.  This possibility will be examined next. 
 
     The physical meaning of the strain at ε = 2ε y  will be taken as the 
failure strain at which the material achieves significant ductility before 
failing.  But this is still limited to only the highly idealized case of elastic-
perfectly plastic solids.  In the next section failure will be given a much 
more tangible and useful interpretation.  
 
  



General Definition of Failure Stress and Strain 
 
     In the previous section a relationship between ductility and some type of 
failure designation was examined for the highly idealized case of elastic-
perfectly plastic behavior.  Also some hypothetical cases of failure occurring 
at particular strain values were used.  Now the concept of failure will be 
enlarged to represent a failure of function, not just actual physical failure by 
breakage.  This will first be done for the idealized elastic-perfectly plastic 
case and then thereafter for all of the more general cases. 
 
     Fig. 8 again shows the elastic-perfectly plastic case but now the actual 
physical failure by fragmentation is left unspecified. 
 
 

 
 

Fig. 8   Failure of function at ε f = 2ε y   
 
     The designation of functional failure as occurring at ε f = 2ε y  comes 
from the preceding section where it was shown that this value of strain is 
that at which significant or full ductility is first achieved.  Beyond that point 
other extraneous effects could develop.  This result follows from the 
ductility measure given by (12)-(15).  It is the concept of effective failure as 
related to the commonly used measure of ductility according to uniaxial 
strain. 
 
     Now move on to the general case of strain hardening, as in Fig. 3.  The 
obvious and first attempt to assign failure in this general case would be to 
take the failure strain as ε f = 2ε y  from the elastic-perfectly plastic case 
and then determine the corresponding failure stress from the experimental 



strain hardening curve.  Unfortunately this simple procedure would be 
completely incorrect.  The easiest way to justify that realization would be to 
note that the resulting failure strain would be independent of the degree and 
type of strain hardening.  On further consideration it is realized that both the 
failure stress and the failure strain must be intimately involved with the full 
behavior of the strain hardening region and probably also depend on the 
previous elastic region of behavior as well. 
 
     Where does this seeming “roadblock” leave the general failure 
specification?  Return now to the previous elastic-perfectly plastic case in 
Fig. 9. 
 
 

 
 

Fig. 9    Conserved and dissipated energies at failure of function 
 
 
Designate the conserved and dissipated energies as shown in Fig. 9 and as 
separated by the ideal elastic unloading path.  Note that the previously 
ductility deduced effective failure strain of ε f = 2ε y  is equivalent to 
requiring that 
 
 UD = 2UC   (16) 
 
For the elastic-perfectly plastic case, the condition (16)  still designates the 
failure as a failure of function, not as a breakage into separate pieces.  The 
form (16) as a failure criterion will now be rationalized for general 
application. 
 



     With the necessity to screen off failure designations at large strains in 
order to preclude anomalous effects, take the general case of strain 
hardening and apply the failure criterion (16) to it as shown in Fig. 10. 
 
 

 
 

Fig. 10    General failure criterion 
 
 
In this method of determining effective failure, or simply failure from this 
point on, the failure stress and failure strain are totally dependent upon the 
full and complex nature of the strain hardening characteristics. 
 
    The failure criterion is formally stated as 
 
At  UD = 2UC   
 

 

ε = ε f

σ =σ f

  (17) 

 
In general, because of the strain hardening effect, the failure strain will be 
much larger than that of ε f = 2ε y  for the elastic-perfectly plastic case.  
There could be other criteria that give nearly the same result as (17) in some 
cases.  A simple example is that of σ f = E / 2( )ε f . But the energy form 
(17) is preferred because of its relationship to ductility. 
 



     The general failure criterion given by (17) also reveals the characteristic 
that for this failure criterion the ductility level indicated by UD is at the 
threshold of significant or full ductility. 
 
     It is important to observe that if actual physical failure occurs before the 
strain hardening form satisfies the failure criterion (17) then that level of 
failure stress and strain is the controlling specification. 
 
     The criterion (17) effectively screens off the anomalous behaviors that 
sometimes show an “upturn” in the strain hardening form that can appear a 
large strain levels.  Such aberrant effects are due to complex anisotropic 
induced effects and other uniaxial affectations that are not representative of 
general three dimensional failure. 
 
     The failure criterion (17) is identical with that derived in Ref. [1] by a 
different method.  This failure criterion is general, coordinated with but still 
independent of the yield stress, and certainly explicit and unambiguous. 
 
     In the next section a specific and realistic example of strain hardening 
will be used to demonstrate the efficacy of the failure criterion (17).   Also, 
(17) will be stated in an alternate but equivalent form. 
 
 
Strain Hardening Test of Failure Stress Definition 
 
     To complete the developments, the new strain hardening formulation (5)-
(7) will be used to test the failure stress definition that was designed for use 
with it.  A specific but common strain hardening example will be stated and 
then analyzed for the failure stress and strain identified with it.  Before 
posing the example, the general forms that are needed will be developed. 
 
      The failure criterion (17) requires the development of the conserved and 
dissipated energies UC  and UD.  The conserved energy in Fig. 10 is simply 
given by 
 

 UC = 1
2
σ 2

E
  (18) 

 
Using the strain hardening forms (5)-(7) then gives 



 

 2EUC =σ y
2 + 2σ yσ 0 1− e

α ε y−ε( )⎡
⎣⎢

⎤
⎦⎥ +σ 0

2 1− eα ε y−ε( )⎡
⎣⎢

⎤
⎦⎥
2

  (19) 

 
     The dissipated energy in Fig. 10 is given by 
 

 UD = σ dε −UC0

ε

∫   (20) 

 
or 
 

 UD = σ dε + σ dε −UCε y

ε

∫0

ε y∫   (21) 

 
This then becomes 
 

 UD = 1
2E

σ y
2 −σ 2( ) + σ dε

ε y

ε

∫   (22) 

 
Carrying out the integration in (22) using (5)-(7) results in 
 

 UD = 1
2E

σ y
2 −σ 2( ) + σ y +σ 0( ) ε − ε y( )− σ 0

α
1− eα ε y−ε( )⎡
⎣⎢

⎤
⎦⎥  (23) 

 
     Combining σ  from (5)-(7) into (23) and then combining UC and UD into 
the failure criterion (17) gives 
 

 

1+
σ y

σ 0

⎛
⎝⎜

⎞
⎠⎟

2

+α 1+
σ y

σ 0

⎛
⎝⎜

⎞
⎠⎟
ε y − ε( )− eα ε y−ε( )

+3
σ y

σ 0

1− eα ε y−ε( )⎡
⎣⎢

⎤
⎦⎥ +
3
2
1− eα ε y−ε( )⎡
⎣⎢

⎤
⎦⎥
2

= 0

  (24) 

 



When a specific problem is stated then (24) can be solved for the strain at 
failure ε = ε f .  Three data parameters are needed to specify (24), ε y ,

σ y /σ 0 , and α . 
 
     Now the example will be taken as that of a light alloy such as an 
aluminum form.  Take 
 
 E = 80GPa   
 
and 
 

 σ 0 =σ y =
σ f

2
  

 
with 
 

 
σ y = 160 MPa
σ f = 320 MPa

  

 
These then give 
 

 
ε y = 0.2x10

−2

α = 500
  

 
Note that the symbol σ f  will be used for both the failure stress as the 
asymptote of the strain hardening example and as the result from the failure 
criterion (17).  Whichever one it is will be clear from the context.  The above 
stated value is for the asymptotic value of σ f .        
 
     For this particular example, the failure criterion (24) when stated as 
percent strain, not absolute strain, becomes 
 

 17 − 20ε f −14e
1−5ε f + 3e2 1−5ε f( ) = 0   (25) 



 
There is one positive root of (25) and it is given by 
 
 ε f = 0.819%   

 
     The corresponding failure stress from the strain hardening form (5)-(7) is 
given by 
 
 σ f = 313MPa   
 
This value of the failure stress is at 98% of the asymptotic value of 320MPa.  
Thus the failure criterion completely captures the failure stress behavior of 
the light alloy example.  The strain at failure is seen to be about twice as 
large as that from the corresponding elastic-perfectly plastic form of 
ε f = 2ε y .  Fig. 11 shows these results for the light alloy example. 
 
 

 
 

Fig. 11    Light alloy example 
 
 
     The overall conclusion on this failure stress example is that the conserved 
and dissipated energies based failure criterion (17) shows a well balanced 
capability for assessing the failure stresses and strains in well posed 
examples while still preserving the capability to screen off erratic and 
erroneous data cases that claim to possess very high strength capabilities at 
large strains. 
 
     Noting that the total work done in deforming the material is W = UC + UD 
and using this in the failure criterion (17) gives the alternate form of it as 



 
When 
 

 σ dε = 3σ
2

2E0

ε

∫   (26) 

 
Then 
 

 
σ =σ f

ε = ε f

  (27) 

 
The left had side of (26) is simply the area under the entire stress-strain 
curve, the work. 
 
     Although the presentation in this paper probes the matters of yield stress 
and failure stress much further than does the treatment in Ref. [1], 
everything in that reference is completely compatible with the results here. 
 
     Finally, although this strain hardening failure example was conducted in 
full detail, it should also be apparent that failure stresses and strains as 
specified by (17) are in many or most cases apparent and assignable by 
inspection of the relevant data sets. 
 
 
Computational Opportunities and Challenges 
 
     There are at least two major reasons why it is so important to develop 
consistent and reliable methods (and definitions) for determining materials 
properties.  The first is to ensure a safe and reliable data base for assessing 
the capabilities of different materials and materials classes. The second 
reason is to actually use these properties in materials behavior applications, 
sometimes critical applications.  The first reason just given is self evident.  
The second reason involves great complexity and will be discussed further 
here in the materials failure context. 
 
     The major theme of failure theory is to use the minimal failure data 
mechanical properties to calibrate failure theories that are then capable of 
predicting the state of safety or that of failure throughout the entire domain 



of three dimensional stress space, in all applications.  Although this has 
always been the ultimate goal, it is only now beginning to come within the 
realm of realization.  This is right now occurring through the tremendous 
leverage that computational capabilities offers for all problems of load 
bearing structures and through a new and comprehensive theory of failure. 
 
     The new theory of failure, Christensen [1], is fully calibrated by only the 
uniaxial tensile and compressive failure stress values.  It applies to all 
isotropic materials in load bearing structures.  Essentially it applies to all 
engineering materials: brittle metals, ductile metals, glassy polymers, 
ceramics, glasses, and isotropic minerals.  Since the failure actuates in the 
small strain range for these materials, the corresponding deformation 
modeling only needs to replicate the small strain range of behaviors.  
However, these small strain level behaviors can be and often are embedded 
in kinematical conditions appropriate to large displacements and large 
rotations and other nonlinearity sources.  The corresponding finite element 
programs in general must therefore employ nonlinear kinematics and effects. 
 
     There is a major opportunity to implement the new failure theory into 
finite element or computational programs under these general conditions.  It 
would be necessary to utilize fully nonlinear forms such as the Cauchy stress 
or the Piola-Kirchhoff stress forms and the appropriate nonlinear kinematical 
relations such as the right or left Cauchy-Green tensors.  The overall analysis 
will still locally reduce to small strain conditions before the advent of local 
failure.  Although this plan and procedure may seem straightforward in 
overall objective, there would be many crucial junctions and options to be 
examined and tested in order to find the best overall and optimal formulation 
and approach. 
 
     Computational strategies and resources finally has it within its reach to 
provide a full scale, all inclusive predictive capability extending from initial 
load application through final materials and structural failure.  When this 
plan is fully developed and widely available it will provide the most 
powerful tool that could possibly be expected.  Until that happens the finite 
element programs and computational resources will not be fully realized and 
utilized. 
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